
TECHNICAL CATALOG

HITACHI INVERTER-DRIVEN SPLIT SYSTEM HEAT PUMP AIR CONDITIONERS

- DC Inverter UTOPIA -

Technical Catalog

Models

< Outdoor Units > RAS-4HVNC1 RAS-5HVNC1 RAS-6HVNC1

IMPORTANT NOTICE

- HITACHI pursues a policy of continuing improvement in design and performance of products.
 The right is therefore reserved to vary specifications without notice.
- HITACHI cannot anticipate every possible circumstance that might involve a potential hazard.
- This heat pump air conditioner is designed for standard air conditioning only. Do not use this heat pump air conditioner for other purposes such as drying clothes, refrigerating foods or for any other cooling or heating process.
- Do not install the unit in the following places. It may cause a fire, deformation, corrosion or failure.
 - * Places where a fire, oil, steam or powder may enter directly to the unit such as right above a kitchen, etc.
 - * Places where oil (including machinery oil) may be present in quantities.
 - * Places where a lot of sulfide gas drifts such as a hot spring.
 - * Places where flammable gas may be generated or flow.
 - * Places where strong salty wind blows, such as coast regions.
 - * Places with an atmosphere of acidity or alkalinity.
 - * Places where gas from festering trash, etc. may be generated.
- Do not install the unit in the place where silicon gas drifts. If the silicon gas attaches to the surface of the heat exchanger, the fin surface repels water. As a result, drain water splashes outside of the drain pan and splashed water runs inside of the electrical box. In the end, water leakage or electrical devices failure may occur.
- Pay attention to the following points when installing the unit in a hospital or other facilities where electromagnetic waves are generated from medical equipment.
 - * Do not install the unit in the place where electromagnetic waves are directly radiated to the electrical box, remote control cable or remote control switch.
 - * Install the unit at least 3 meters away from devices generating electromagnetic waves, such as a radio.
- Do not install the unit in the place where animals and plants catch the direct outlet air. It could adversely
 affect animals and plants.
- The installer and system specialist shall secure safety against the refrigerant leakage according to local regulations or standards. The following standards may be applicable, if the local regulations are not available;
 - International Organization for Standardization, ISO5149 or European Standard, EN378 or Japan Standard, KHKS0010.
- No part of this manual may be reproduced without written permission.
- It is assumed that this heat pump air conditioner will be operated and serviced by English speaking people.
 If this is not the case, the customer should be provided with safety, caution and operating signs in the native language.
- If you have any questions, contact your distributor or dealer of HITACHI.
- This manual gives a common description and information for this heat pump air conditioner which you
 operate as well for other models.
- This heat pump air conditioner has been designed for the following temperatures. Operate the heat pump air conditioner within this range.

Temperature	(°C)

		Maximum	Minimum
Cooling	Indoor	32 DB/23 WB	21 DB/15 WB
Operation	Outdoor	46 DB	-5 DB
Heating	Indoor	27 DB	15 DB
Operation	Outdoor	15 WB	-20 WB

DB: Dry Bulb, WB: Wet Bulb

This manual should be considered as a permanent part of the air conditioning equipment and should remain with the air conditioning equipment.

TCO-13001 i

CHECKING PRODUCT RECEIVED

- Upon receiving this product, inspect it for any shipping damage.
 Claims for damage, either apparent or concealed, should be filed immediately with the shipping company.
- Check the model number, electrical characteristics (power supply, voltage and frequency) and accessories to determine if they are correct.

The standard utilization of the unit shall be explained in these instructions.

Therefore, the utilization of the unit other than those indicated in these instructions is not recommended. Please contact your local agent, as the occasion arises.

HITACHI's liability shall not cover defects arising from the alteration performed by a customer without HITACHI's consent in a written form.

ii TCO-13001

< Signal Words >

Signal words are used to identify levels of hazard seriousness.
 Definitions for identifying hazard levels are provided below with their respective signal words.

: DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury.

WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury.

: CAUTION, used with the safety alert symbol, indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

: NOTICE is used to address practices not related to personal injury.

NOTE

: NOTE is useful information for operation and/or maintenance.

TCO-13001 iii

▲ DANGER

- Do not perform installation work, refrigerant piping work, drain pumping, drain piping and electrical wiring connecting work without referring to our installation manual. If the instructions are not followed, it may result in a water leakage, an electric shock, a fire and an injury.
- Use the specified non-flammable refrigerant (R410A) to the outdoor unit in the refrigerant cycle. Do not charge the unit with materials other than R410A, such as hydrocarbon refrigerants (propane, etc.), oxygen, flammable gases (acetylene, etc.) or poisonous gases when installing, maintaining and moving the unit. Contamination of these are extremely dangerous and may cause an explosion, a fire, and an injury.
- Do not pour water into the product. This product is equipped with electrical parts. If water is poured, therefore, it will cause a serious electric shock.
- Make sure to turn OFF the main power supply before opening the service cover of the outdoor unit.
 Otherwise, it may cause an electric shock.
- Do not touch or adjust safety devices inside the indoor unit and outdoor unit. If these devices are touched or readjusted, it may cause a serious accident.
- Prior to installation work, make sure to conduct refrigerant leakage test. The refrigerant (Fluorocarbon) for this unit is non-flammable, non-toxic and odorless. However, if it should leak and contact with fire, toxic gas will be generated. Also because the fluorocarbon is heavier than air, it settles close to the floor, which could cause suffocation.
- Refrigerant leakage may lead to insufficient air and cause difficulty with breathing. Turn OFF the main switch, extinguish all naked flames and contact your service contractor, if refrigerant leakage should occur.
- The installer and system specialist shall secure safety against refrigerant leakage according to the local regulations or standards.
- For installation in a small room, make sure to take strong measures to prevent the refrigerant from exceeding the maximum permissible concentration in case a refrigerant gas leakage should occur. Otherwise, leaked refrigerant gas will cause suffocation in the event of a leakage. Consult with your distributor for countermeasures (ventilation system, etc).
- Use an ELB (Earth Leakage Breaker).
 If it is not used, an electric shock or a fire can be caused in the event of a fault.
- Do not install the outdoor unit where there is high level of oil mist, flammable gases, salty air or harmful gases such as sulfur.
- When installing the unit, make sure to connect the refrigerant piping before the compressor starts operating. When maintaining, relocating and disposing the unit, remove the refrigerant piping after the compressor stops. If the refrigerant piping are not connected and the compressor are operated with the stop valve opened, the refrigerant cycle will be subjected to extremely high pressure, which may cause an explosion, a fire and an injury.
- Do not modify protection devices such as a pressure switch. Modification to protection devices (short circuit, etc.) might cause a fire and an explosion.
- Be sure to use Nitrogen Gas for air tight test. If other gases such as oxygen gas, acetylene gas or fluorocarbon gas are accidentally used, it may cause an explosion or gas intoxication.
- When cleaning the existing refrigerant piping, comply with the following points.
 - a. Use non-flammable and non-toxic cleaning agent for cleaning the pipes. Flammable cleaning agent may cause an explosion or a fire.
 - b. Open the window for ventilation during installation. If not, it might cause suffocation.
 - c. Make sure that cleaning agent does not contact fire nor reach a high temperature, in order to prevent toxic gas from being generated.

iv TCO-13001

AWARNING

- Do not use any sprays such as an insecticide, lacquer or hair spray, or other flammable gases within approximately one (1) meter from the system.
- If the circuit breaker or fuse is often activated, stop the system and contact your service contractor.
- Check that the ground wire is securely connected. If the unit is not correctly grounded, it will lead to an electric shock. Do not connect the ground wiring to a gas piping, water piping, lighting conductor or ground wiring for telephone.
- Connect a fuse of specified capacity.
- Before any brazing work, check to ensure that there is no flammable material around. Otherwise, it might lead to a fire.
- Select a sufficiently strong installation location. If not, the unit may fall down and it may lead to injuries.
- When handling the refrigerant, be sure to wear leather gloves to prevent cold injuries.
- Do not install the unit where oil, vapor, organic solvent and corrosive gas (ammonia, sulfur compound and acid, etc.) may be present in quantities. Operation under such conditions may lead to refrigerant leakage due to corrosion, an electric shock, performance degradation and a failure.
- Electrical wiring work must be performed by authorized installers. Incorrect installation by a nonauthorized installer may cause an electric shock or a fire.
- Perform electrical work according to this Installation Manual and all the relevant regulations and standards.
 Failing to follow these instructions can cause capacity shortage and performance degradation, resulting in an electric shock and a fire.
- Use specified cables between the outdoor unit and the indoor units. Selecting incorrect cables may cause an electric shock or a fire.
- Ensure that the wiring terminals are tightened securely with the specified torques. Loose terminals may cause heat generation at the terminal connection part, a fire or an electric shock.
- Make sure to tie the wires together with cord clamps after connecting the wiring to the terminal block and pass the wires through the wiring hole. If not, the wires will be pinched, causing a fire.
- Make sure to turn OFF the power supply before handling the service connector.
- Fix the cables securely. External forces from the cables applied on the terminals could lead to heat generation and a fire.
- When controlling the switch on PCB, do not touch other electrical parts. Otherwise, it may cause an
 electric shock.
- Protect the wires, electrical parts, etc. from rats or other small animals. If not, rats may gnaw at unprotected parts, which may lead to a fire.
- Take care not to pinch electrical wirings when attaching the service cover. It might cause an electric shock or a fire.
- Turn OFF the main power supply of all the units before electrical wiring work or a periodical check of electrical parts and check that there is no residual voltage, to avoid an electric shock being caused by residual voltage.

TCO-13001 v

▲CAUTION

- Do not step on the product nor put any material on it.
- Do not put any foreign material on the unit or inside the unit.
- Provide a strong foundation so that;
 - a. the outdoor unit will not incline.
 - b. abnormal sound will not occur.
 - c. the outdoor unit will not fall down due to a strong wind or an earthquake.
- Tighten the flare nuts according to the specified torque. If an excessive force is applied, the flare nuts may crack due to aging degradation, causing refrigerant leakage.

NOTICE

- Do not install the indoor unit, outdoor unit, remote control switch and cable within approximately 3 meters from strong electromagnetic wave radiators such as medical equipment.
- For operation after a long-term shutdown, supply electrical power to the system to energize the crankcase heater for 12 hours before startup.
- Make sure that the outdoor unit is not covered with snow or ice, before operation.
- The packaged air conditioner may not be operated normally under the following cases.
 - * In case that electrical power for the packaged air conditioner is supplied from the same power transformer as the device with high electricity consumption*.
 - * In case that the power source wires for the device* and for the packaged air conditioner are located close to each other.

Device*: (Ex) Lift, container crane, rectifier for electric railway, inverter power device, arc furnace, electric furnace, large-sized induction motor and large-sized switch.

Regarding the cases mentioned above, surge voltage may be inducted in the power supply wiring for the packaged air conditioner due to a rapid change in power consumption of the device and an activation of switch.

Therefore, check the field regulations and standards before performing electrical work in order to protect the power supply for the packaged air conditioner.

NOTE

- It is recommended that the room be ventilated every 3 to 4 hours.
- The heating capacity of the heat pump unit decreases according to the outdoor air temperature. Therefore, it is recommended that auxiliary heating equipment be used in the field when installing the unit in a low temperature region.

vi TCO-13001

- CONTENTS -

< Technical Data >

1.	Feat	tures	1-5
	1.1	System Features	1-5
	1.2	Appearance	1-8
	1.3	Features on Outdoor Units	1-8
2.	Gen	neral Data	1-14
3.	Dime	ensional Data	1-15
4.	Selection Data		
	4.1	Service Space	
	4.2	Selection Guide	1-19
	4.3	Capacity Characteristic Curve	1-22
	4.4	Correction Factor According to Temperature Condition (Cooling)	1-26
	4.5	Correction Factor According to Temperature Condition (Heating)	1-27
	4.6	Correction Factor According to Piping Length	1-28
	4.7	Correction Factor According to Defrosting Operation	1-30
	4.8	Sensible Heat Factor (SHF)	1-30
5.	Elec	trical Data	1-31
6.	Soul	nd Data	1-32
7.	Wor	king Range	1-33
8.	Opti	ional Accessories	1-34
	8.1	Air Flow Guide: AG-335A	1-34
	8.2	Wind Guard: WSP-335A	1-36
	8.3	Snow Protection Hood	1-38
	8.4	Drain Kit: DBS-26	1-43
	8.5	Branch Pipe: TW-22AN, TW-52AN, TG-53AN	1-44
	8.6	Multi-Kit for Line Branch: MW-102AN1	1-46
9.	Com	nponent Data	1-47
10.	Con	trol System	1-48
1	0.1	Refrigeration Cycle	1-48
1	0.2	System Control	1-50
	1	0.2.1 Individual Operation	1-50
	1	0.2.2 Simultaneous Operation	1-51
		General Description of Refrigerant Cycle Control	
		Standard Operation Sequence	
1	0.5	Protection and Safety Control	
	0.6	Safety and Control Device Setting	
		Electrical Wiring Diagram	
11.	Misc	cellaneous Notes	1-71
12.	Stan	ndard Specifications	1-72
13.	Cau	tion on Refrigerant Leakage	1-73
1	3.1	Maximum Permissible Concentration of HFC (or HCFC) Gas	1-73
1	3.2	Calculation of Refrigerant Concentration	1-73
1	3.3	Countermeasure for Refrigerant Leakage According to KHK Standard	1-73

- CONTENTS -

< Installation & Maintenance Manual >

	Outdoor Units (P5415267)	2-3
•	Multi-Kit: TW-22, 52AN (P5414806-rev.2)	2-61
•	Multi-Kit: TG-53AN (P5414807-rev.1)	2-65
•	Multi-Kit: MW-102AN1 (P5415123)	2-69

viii TCO-13001

Technical Data

1-2 TCO-13001

- CONTENTS -

1. Fe	atures	1-5
1.1	1 System Features	1-5
1.2	2 Appearance	1-8
1.3	3 Features on Outdoor Units	1-8
2. Ge	eneral Data	1-14
3. Dii	mensional Data	1-15
4. Se	election Data	1-16
4.1	1 Service Space	1-16
4.2	2 Selection Guide	1-19
4.3	3 Capacity Characteristic Curve	1-22
4.4	3,	
4.5	3 · · · · · · · · · · · · · · · · · · ·	
4.6		
4.7		
4.8	,	
	ectrical Data	
6. Sc	ound Data	1-32
7. W	orking Range	1-33
8. Op	otional Accessories	1-34
8.1	1 Air Flow Guide: AG-335A	1-34
8.2		
8.3		
8.4		
8.5	, - ,	
8.6		
9. Cc	omponent Data	1-47
10. Cc	ontrol System	1-48
	1 Refrigeration Cycle	
10.2	2 System Control	
	10.2.1 Individual Operation	1-50
40.	10.2.2 Simultaneous Operation	
10.		
	4 Standard Operation Sequence 5 Protection and Safety Control	
	6 Safety and Control Device Setting	
	7 Electrical Wiring Diagram	
	scellaneous Notes	
	andard Specifications	
	·	
13. Ca 13.	aution on Refrigerant Leakage	
	2 Calculation of Refrigerant Concentration	
	3 Countermeasure for Refrigerant Leakage According to KHK Standard	

1-4 TCO-13001

1. Features

1.1 System Features

New DC Inverter UTOPIA Series for Single Power Source

HITACHI proudly introduces the New "DC Inverter UTOPIA" HVNC1 series, the highly-efficient and reliable air conditioning system, for the Oceanian markets. Recently, increased numbers of buildings and shops are requiring "Intelligent" facilities - communication networks, office automation, including a comfortable environment. In addition to that, energy saving operation is needed.

Particularly, comfortable space is required all the day through the year in shops and office buildings. This split air conditioner, "DC Inverter UTOPIA" can meet these requirements. The proven combination of the scroll compressor and the inverter provides the best air conditioning for shops and small office buildings.

New Line-up of Outdoor Units

Туре	Model Name
	RAS-4HVNC1
Outdoor Unit	RAS-5HVNC1
	RAS-6HVNC1

Standard Combination of Outdoor Unit and Indoor Unit

Outdoor Unit	Indoor Unit (Type)	Single Combination	Twin Combination	Triple Combination	Quad Combination
RAS-4HVNC1	In-the-Ceiling (RPI-*FSN2SQ)	RPI-4.0FSN2SQ	-	-	-
	4-Way Cassette (RCI-*FSN3)	RCI-4.0FSN3	RCI-2.0FSN3 x 2	-	RCI-1.0FSN3 x 4
	4-Way Cassette (Compact) (RCIM-*FSN3)	-	RCIM-2.0FSN3 x 2	-	RCIM-1.0FSN3 x 4
	In-the-Ceiling (RPI-*FSN2)	-	RPI-2.0FSN2 x 2	-	RPI-1.0FSN2 x 4
	2-Way Cassette (RCD-*FSN2)	-	RCD-2.0FSN2 x 2	-	RCD-1.0FSN2 x 4
	Ceiling (RPC-*FSN3)	-	RPC-2.0FSN3 x 2	-	-
	Wall (RPK-*FSNSM3)	-	RPK-2.0FSNSM3 x 2	-	RPK-1.0FSNSM3 x 4
RAS-5HVNC1	In-the-Ceiling (RPI-*FSN2SQ)	RPI-5.0FSN2SQ	-	-	-
	4-Way Cassette (RCI-*FSN3)	RCI-5.0FSN3	RCI-2.5FSN3 x 2	RCI-1.5FSN3 x 3	-
	4-Way Cassette (Compact) (RCIM-*FSN3)	-	-	RCIM-1.5FSN3 x 3	-
	In-the-Ceiling (RPI-*FSN2)	-	RPI-2.5FSN2 x 2	RPI-1.5FSN2 x 3	-
	2-Way Cassette (RCD-*FSN2)	-	RCD-2.5FSN2 x 2	RCD-1.5FSN2 x 3	-
	Ceiling (RPC-*FSN3)	-	RPC-2.5FSN3 x 2	RPC-1.5FSN3 x 3	-
	Wall (RPK-*FSNSM3)	-	RPK-2.5FSNSM3 x 2	RPK-1.5FSNSM3 x 3	-
RAS-6HVNC1	In-the-Ceiling (RPI-*FSN2SQ)	RPI-6.0FSN2SQ	-	-	-
	4-Way Cassette (RCI-*FSN3)	RCI-6.0FSN3	RCI-3.0FSN3 x 2	RCI-2.0FSN3 x 3	RCI-1.5FSN3 x 4
	4-Way Cassette (Compact) (RCIM-*FSN3)	-	-	RCIM-2.0FSN3 x 3	RCIM-1.5FSN3 x 4
	In-the-Ceiling (RPI-*FSN2)	-	RPI-3.0FSN2 x 2	RPI-2.0FSN2 x 3	RPI-1.5FSN2 x 4
	2-Way Cassette (RCD-*FSN2)	-	RCD-3.0FSN2 x 2	RCD-2.0FSN2 x 3	RCD-1.5FSN2 x 4
	Ceiling (RPC-*FSN3)	-	RPC-3.0FSN3 x 2	RPC-2.0FSN3 x 3	RPC-1.5FSN3 x 4
	Wall (RPK-*FSNSM3)	-	RPK-3.0FSNSM3 x 2	RPK-2.0FSNSM3 x 3	RPK-1.5FSNSM3 x 4

- The single connection is subject to MEPS. Other connections are NOT acceptable.
- Refer to the Technical Catalog as to the information of indoor units.

Indoor Unit	Technical Catalog No.
RPI-*FSN2SQ	TC-12001
RCI-*FSN3	TCI-12001
RCIM-*FSN3	TCI-13002
RPI-*FSN2 RCD-*FSN2	TCI-08001
RPC-*FSN3	TCI-13001
RPK-*FSNSM3	TCI-12002

1-6 TCO-13001

Enhanced Combination of Outdoor Unit and Indoor Unit

(1) The combination of outdoor units is available in the following conditions. For simultaneous operation of all multiple indoor units, it is recommended to connect less indoor units than is recommended, in order to prevent a cold draft during heating operation.

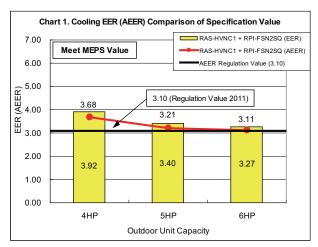
Outdoor Unit Capacity		4HP	5HP	6HP	
Recommended Number of Connectable Indoor Unit		≤ 2 Units			
Maximum Number of Co	onnectable Indoor Unit		4 Units		
Minimum Indoor Unit Ca	apacity		0.8HP		
	it Capacity to Outdoor Unit Capacity the recommended number of		90-115% (90-100%)		
	In-the-Ceiling Type (RPI-*FSN2SQ)	Only 4.0HP	Only 5.0HP	Only 6.0HP	
	4-Way Cassette Type (RCI-*FSN3)	1.0HP			
	4-Way Cassette (Compact) Type (RCIM-*FSN3)	0.8HP			
Minimum Indoor Unit Capacity	In-the-Ceiling Type (RPI-*FSN2)	0.8HP			
Supusity	2-Way Cassette Type (RCD-*FSN2)	1.0HP			
	Ceiling Type (RPC-*FSN3)	1.5HP			
	Wall Type (RPK-*FSNSM3)	1.0HP			

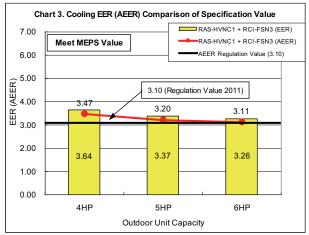
- (2) (Total Indoor Unit Capacity / Total Outdoor Unit Capacity) should be within the value shown in the "Ratio of Total Indoor Unit Capacity to Outdoor Unit Capacity" in the table above. If the ratio exceeds 100%, adjust it according to the outdoor unit capacity.
- (3) In the following cases, it is recommended to connect less indoor units than is recommended, and it is also recommended that "Ratio of Total Indoor Unit Capacity to Outdoor Unit Capacity" be less than 100%.
 - 4-Way Cassette Type or Ceiling Type indoor unit is connected to the outdoor unit
 - The unit is installed in cold areas (areas where outside temperature drops to -5°C)
 - The unit is installed in cold areas under high heating load conditions.
- (4) For operation of multiple indoor units, the minimum indoor unit capacity against the maximum indoor unit capacity in the same refrigerant cycle should be as follows.

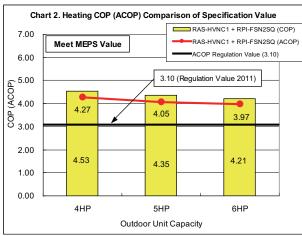
Max. Indoor Unit Capacity	0.8 - 1.5HP	2.0HP	2.5 - 4.0HP	5.0 - 6.0HP
Min. Indoor Unit Capacity	≥ 0.8HP	≥ 1.0HP	≥ 1.5HP	≥ 2.0HP

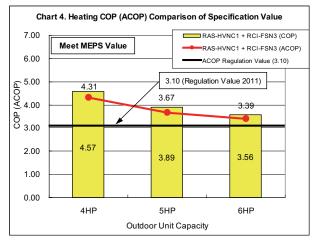
(5) The air flow volume for indoor unit of 0.8 and 1.0HP is higher than that for indoor units of 1.5HP or more. Do not install the unit where users are subject to cold draft during heating operation.

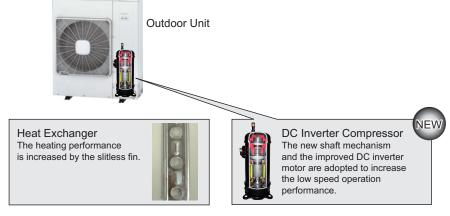
1.2 Appearance




RAS-4 - 6HVNC1

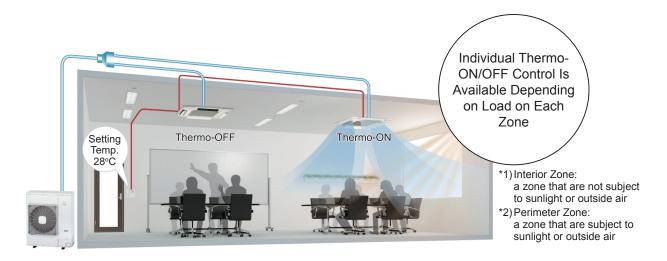

1.3 Features on Outdoor Units


■ Energy-Saving


- a) High energy-saving is realized by the improving of intermediate capacity for the new compressors.
- b) The slitless fin type of the heat exchanger is adopted to improve the heating performance.

1-8 TCO-13001

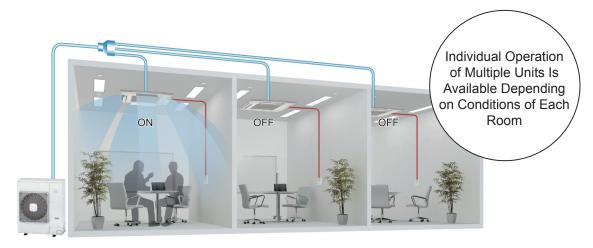
■ Individual Operation


Individual operation makes it possible to keep one room / multiple rooms comfortably and efficiently air-conditioned.

(1) Keeping One Room / Multiple Rooms Comfortably and Efficiently Air-conditioned

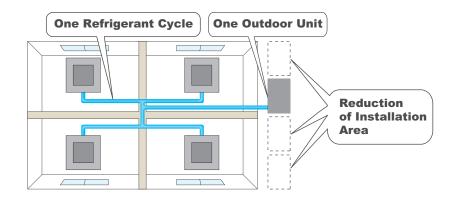
< One Room >

Individual Thermo-ON/OFF Control Achieves Uniform Temperature

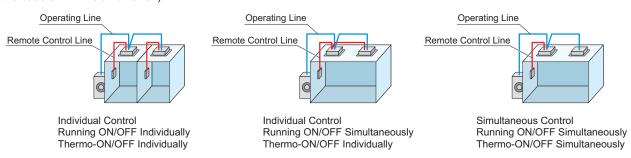

For multiple indoor units installed in one room, Thermo-ON/OFF can individually be controlled with one remote control switch depending on the load on each zone in the room (Interior Zone *1) / Perimeter Zone *2)).

< Multiple Room >

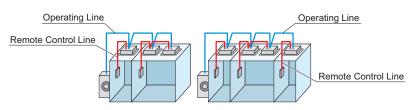
Individual Operation / Temperature Setting for Each Room Save Energy


For multiple indoor units installed in different rooms, operation and temperature setting can individually be controlled depending on conditions of each room, by installing one remote control switch to each room. This will save the units of a lot of energy.

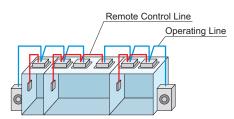
(2) Easier Installation Work


Multiple indoor units can be connected to one outdoor unit, which is why fewer outdoor units are required. This helps to save more installation space and so increases flexibility in installation location. Piping and wiring work for only one refrigerant cycle is required, which makes easier installation possible and makes the work period shortened.

Installation of multiple indoor units to one refrigerant cycle makes installation easier.



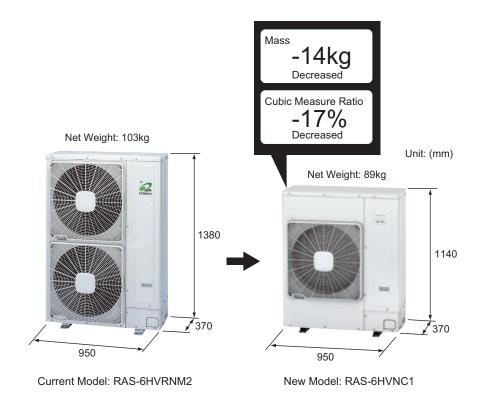
< Wiring Example >


Basic Combinations
(In the case of Twin Combination)

Flexible Combinations for Individual Operation (Combination example by using Individual Operation Function)

Flexible combinations are realized by using the remote control switches.

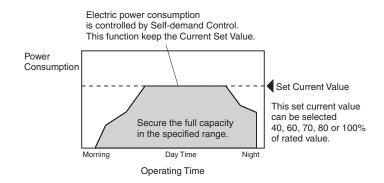
The individual control in the multiple refrigerant cycle systems (H-LINK II) is available.


1-10 TCO-13001

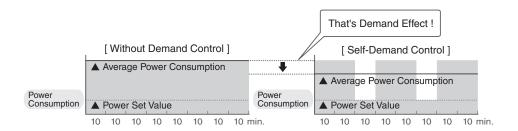
■ Compact Size

The new DC Inverter HVNC1 series outdoor units are lighter and more compact. Their lightness and smaller volume allow them to be transported more easily. They also take up less room and can be installed more quickly.

< Lighter and Smaller >

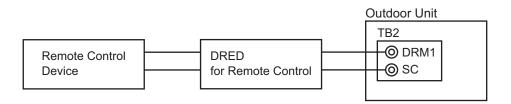

Since it is lighter and smaller less installation space is required, making it easier to access the machine for installation and subsequent maintenance.

■ Demand Control


Self-Demand Control Standard equipment of power-saving technology.

Other facility/multiple air conditioners are not limited to use during on-peak energy hours thanks to demand control function (2 patterns).

(2) Wave Mode


Equipped wave mode function to minimize temperature change and electricity.

(3) Demand Function for Demand Stoppage and Forced Stoppage is available.

The stoppage signal input terminals "DRM1" and "SC" of TB2 are utilized for compressor stoppage by short-circuited them.

This function is supported Australian Standard "Demand response capabilities and supporting technologies for electrical products" AS 4755.3.1: 2008.

1-12 TCO-13001

■ H-LINK II System

The total number of the indoor units to be controlled is increased from 128 to 160, and the total number of the refrigerant cycles to be controlled is increased from 16 to 64 by combination with the equipment supporting the transmission system H-LINK II.

Comparison with H-LINK System

Item	H-LINK	H-LINK II
Number of Max. Ref. Groups / Systems	16	64
Address Setting Range of Indoor Units / Ref. Groups	0 to 15	0 to 63
Number of Max. Indoor Units / Systems	128	160
Total Device Q'ty in Same H-LINK	145	200
Max. Wiring Length	Total 1,000m (5,000m*)	
Recommended Cable	Twist Pair Cable with Shield,	
Neconinenced Cable	Over 0.75mm² (Equ	uivalent to KPEV-S)

^{*:} In case 4 (four) H-LINK relays (PSC-5HR, Optional) are used.

H-LINK II System

The provided H-LINK II wiring system requires only two transmission wires to connect each indoor unit and outdoor unit of up to 64 refrigerant cycles, and to connect wires for all indoor units and outdoor units.

<Specifications>

- * Transmission Wire: 2-Wire
- * Polarity of Transmission Wire: Non-Polar Wire
- * Maximum Outdoor Units to be Connected: 64 Units per System
- * Maximum Indoor Units to be Connected: 160 Units per H-LINK II System
- * Maximum Wiring Length: Total 1,000m (including CS-NET)
- * Recommended Cable: Twist-Pair Cable with Shield, over 0.75mm² (Equivalent to KPEV-S)
- * Voltage: DC5V

NOTE:

H-LINK II system requires the setting of dip switch for outdoor unit.

If the dip switches are not set or the setting is incorrect, the alarm will occur due to transmission failure.

2. General Data

Model		RAS-4HVNC1	RAS-5HVNC1	RAS-6HVNC1	
Power Supply		A	C 1φ, 220-240V/50Hz, 220V/60)Hz	
Nominal Cooling	kW	10.0	12.5	13.0	
Capacity	kcal/h	8,600	10,750	11,200	
	Btu/h	34,100	42,700	44,400	
Nominal Heating	kW	11.2	14.0	16.0	
Capacity	kcal/h	9,600	12,000	13,800	
, ,	Btu/h	38,200	47,800	54,600	
Cabinet		Synthetic Re	esin Paint Baked on Galvanize	d Steel Plate	
Sound Pressure Level					
Cool (Night Shift)/Heat	dB (A)	52(50)/54	52(50)/54	55(53)/57	
Outer Dimensions		, ,) í	` ,	
Height	mm	1,140	1,140	1,140	
G	(in.)	(44-7/8)	(44-7/8)	(44-7/8)	
Width	mm	950	950	950	
	(in.)	(37-3/8)	(37-3/8)	(37-3/8)	
Depth	mm	370	370	370	
·	(in.)	(14-9/16)	(14-9/16)	(14-9/16)	
Net Weight	kg	79	89	89	
-	(lbs.)	(174)	(196)	(196)	
Refrigerant			R410A		
Flow Control		Micro	-Computer Control Expansion	Valve	
Compressor			Hermetic (Scroll)		
Model		EU260XC1	HB36PHD-A1S2	HB36PHD-A1S2	
Quantity		1	1	1	
Motor Output (Pole)	kW	1.90 (4)	3.00 (6)	3.00 (6)	
Heat Exchanger			Multi-Pass Cross-Finned Tube	9	
Condenser Fan			Propeller Fan		
Quantity		1	1	1	
Air Flow Rate	m³/min.	62	68	80	
	(ℓ/s)	(1,033)	(1,133)	(1,333)	
Motor Output (Pole)	kW	0.20 (10)	0.20 (10)	0.20 (10)	
Refrigerant Piping		Flar	e-Nut Connection (with Flare I	Nuts)	
Liquid Line	mm	φ9.52	ф9.52	ф9.52	
	(in.)	(3/8)	(3/8)	(3/8)	
Gas Line	mm	φ15.88	φ15.88	φ15.88	
	(in.)	(5/8)	(5/8)	(5/8)	
Refrigerant Charge	kg	3.2	3.2	3.2	
Approximate					
Packing Measurement	m ³	0.61	0.61	0.61	

NOTES:

1. The above cooling and heating capacities show the maximum capacities when the outdoor and indoor temperature are below condition.

Cooling Operation Conditions

Indoor Air Inlet Temperature: 27°C DB (80°F DB)

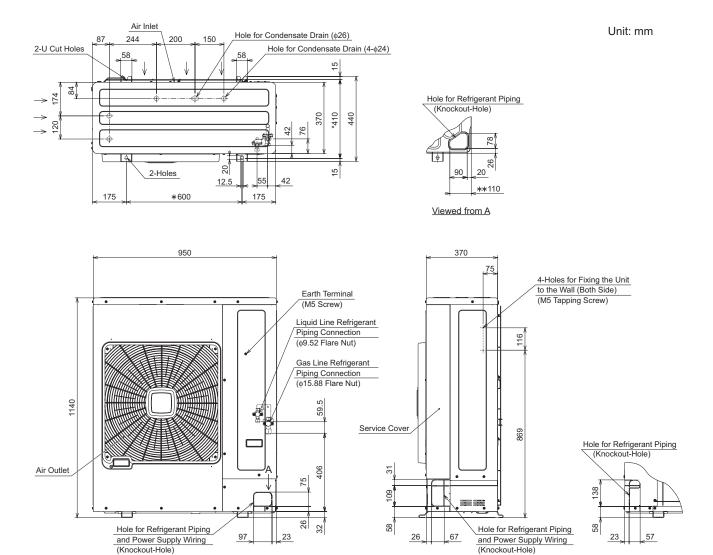
19.0°C WB (66.2°F WB)

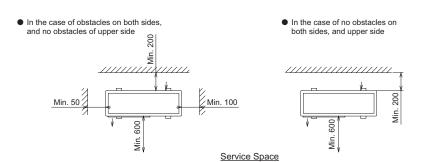
Outdoor Air Inlet Temperature: 35°C DB (95°F DB)

Heating Operation Conditions

Indoor Air Inlet Temperature: 20°C DB (68°F DB)
Outdoor Air Inlet Temperature: 7°C DB (45°F DB)
6°C WB (43°F WB)

Piping Length: 7.5 Meters Piping Lift: 0 Meter


2. The sound pressure is based on the following conditions.


1 Meter from the unit service cover surface, and 1.5 Meters from floor level.

The above data was measured in an anechoic chamber so that reflected sound should be taken into consideration in the field.

1-14 TCO-13001

3. Dimensional Data

Drain Water

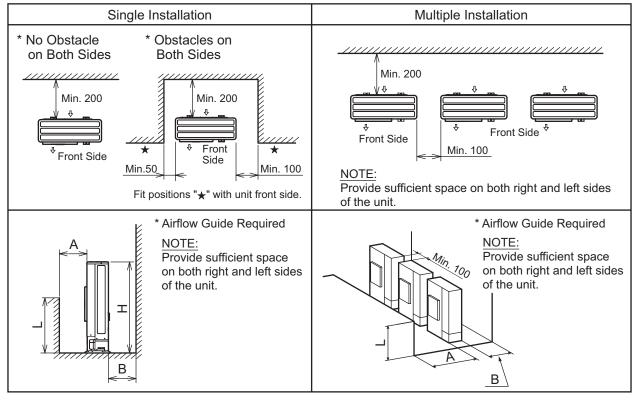
(Knockout-Hole)

- Drain water is caused during a defrosting operation.
- Drain water is caused during a detrosting operation.
 Choose a place where well drainage is available.
 Provide a groove for drain.
 Do not provide an upward slope from the unit to avoid reverse flow of the drain.
 - Provide a second drain pan under the outdoor unit, to collect drain water securely

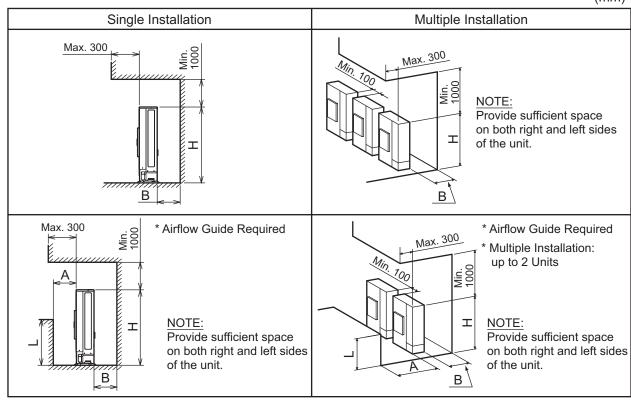
NOTES:

- 1. Refrigerant is factory charged for actual piping length and no additional charge less than 30 meters is required in the field. Additional charge more than 30 meters is required in the field.
- 2. There are stop valves in the cabinet.
- 3. In the case that dimension of 110 marked with ** is provides, it is possible to perform piping work from the bottom without interference such as foundation, etc.
- 4. The dimension marked with * indicates the mounting pitch dimension for anchor bolts.

4. Selection Data


4.1 Service Space

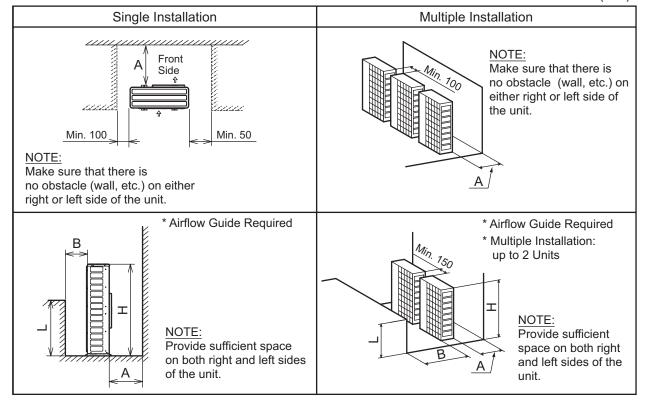
Install the outdoor unit with a sufficient space around the outdoor unit for operation and maintenance as shown below.


(1) Obstacles on Inlet Side

(a) No Obstacle Above

(mm)

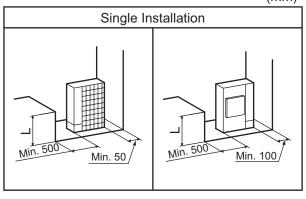
(b) Obstacle Above (mm)



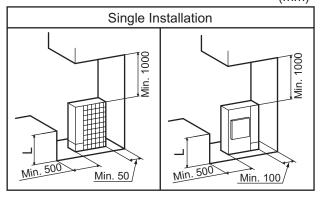
1-16 TCO-13001

(2) Obstacles on Discharge Side

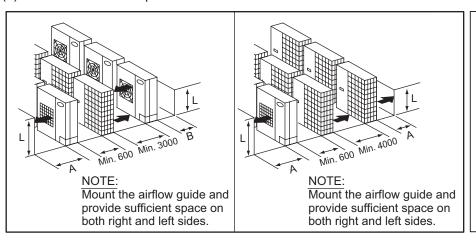
(a) No Obstacle Above


(mm)

(3) Obstacles on Right and Left Side


(a) No Obstacle Above

(mm)



(b) Obstacle Above

(mm)



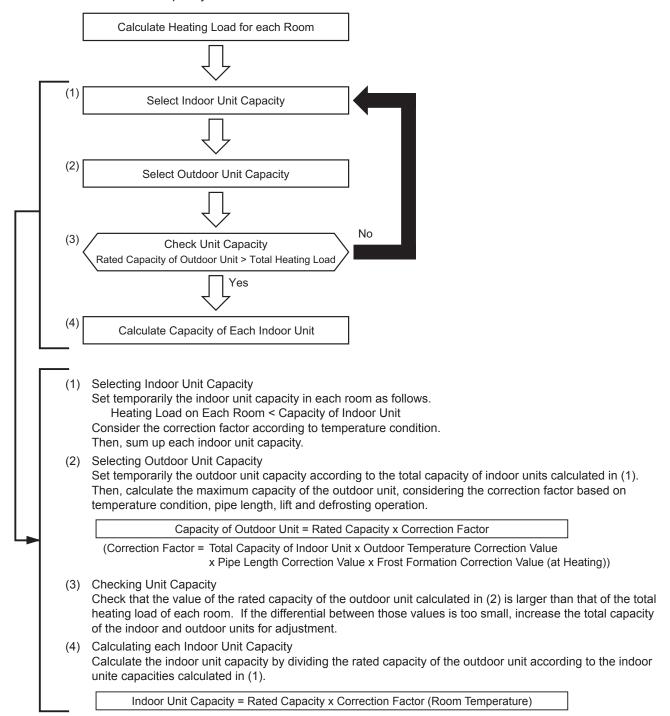
(4) Multi-Row and Multiple Installations

NOTE:

When using Airflow Guide (AG-335A, Optional), check that the discharged air is not short-circuited to the air inlet side.

NOTE

< Dimension of Service Space >


	4	В			
0 < L ≤ 1/2H 1/2H < L ≤ H		0 < L <u><</u> 1/2H	1/2H < L <u><</u> H		
Min. 600	Min. 1400	Min. 300	Min. 350		

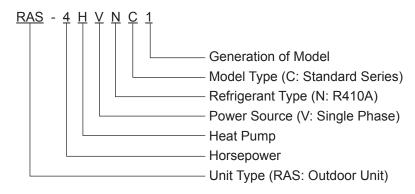
- If L is longer than H, mount the unit on a base so that H is longer than L. In such case ensure that the open space between feet of the base is closed to prevent short circuit of airflow.
- An airflow guide (Optional) is required when there are obstacles on both front and rear side of the outdoor unit
- Up to 3 outdoor units can be installed for multi-row and multiple outdoor unit installation on a roof top, etc. When more than 3 outdoor units are installed, an airflow guide (Optional) is required in order to prevent short circuit of discharged air.
- Make sure to leave at least 250mm of space to the pipe cover side (on right side as viewed from the front) of the unit.
- When using optional parts, refer to "Installation & Maintenance Manual" of each product in order to provide service space correctly.

1-18 TCO-13001

4.2 Selection Guide

The various indoor units can be combined with the HITACHI DC Inverter UTOPIA Series. Selection of Unit Model Capacity Procedure is shown below.

- < Indoor Unit Selection for Installation of Multiple Indoor Units >
- The indoor unit capacity in heating mode is roughly calculated as follows.


Indoor Unit Capacity (Heat) = * Temperature Difference x Air Flow Volume

*(Indoor Unit Outlet Air Temperature - Indoor Unit Inlet Air Temperature)

In simultaneous operation of all multiple indoor units, the total air flow volume increases and so the temperature difference may be smaller. Installing the units where the outlet air directly blows against users, therefore, could cause a cold draft during heating operation. In order to prevent a cold draft during heating operation, decide the outlet air temperature with care when designing facilities.

• In simultaneous operation of all multiple indoor units, it is recommended to connect less indoor units than is recommended, in order to prevent a cold draft during heating operation.

(1) Meaning of Model Name for Outdoor Unit

(2) Nominal Capacity of Outdoor Unit

Model		RAS-4HVNC1 RAS-5HVNC1		RAS-6HVNC1
Horsepower (HP)		4	5	6
Cooling Capacity	Cooling Capacity kW		12.5	13.0
Heating Capacity	kW	11.2	14.0	16.0

Nominal Capacity of Outdoor Unit is under the condition that the total indoor unit horsepower is same as outdoor unit horsepower.

(3) Given Condition (Example)

Total Load for Each Room

Item		Room (1)	Room (2)	Room (3)	(1) + (2) +(3)	
Estimated Cooling Load	kW	2.92	3.86	4.88	11.66	
Estimated Heating Load	kW	3.29	4.34	5.49	13.12	

Temperature Condition

Cooling	Heating
Outdoor Coil Air Inlet	Outdoor Coil Air Inlet
Dry Bulb: 30°C	Dry Bulb: 1°C
Indoor Coil Air Inlet	Wet Bulb: 0°C
Dry Bulb: 27°C	Indoor Coil Air Inlet
Wet Bulb: 19°C	Dry Bulb: 20°C

Equivalent Piping Length between Indoor Units and Outdoor Unit: 50m Piping Lift: 20m

(4) Selecting Matching Indoor Units and Nominal Capacity

Select 4-Way Cassette Type Indoor Units (Example)

Item		Room (1)	Room (2)	Room (3)	(1) + (2) + (3)
Selected Model		RCI-1.5FSN3	RCI-2.0FSN3	RCI-2.5FSN3	-
Nominal Cooling Capacity	kW	4.0	5.0	7.1	16.1
Nominal Heating Capacity	kW	4.8	5.6	8.0	18.4

(5) Selecting Matching Outdoor Unit

Select Outdoor Unit (Example)

Item		Outdoor Unit		
Selected Model		RAS-6HVNC1		
Nominal Cooling Capacity	kW	13.0		
Nominal Heating Capacity	kW	16.0		

1-20 TCO-13001

(6) Actual Capacity

In the case of the example, the total indoor horsepower is 6HP and outdoor horsepower is 6HP. Therefore, the outdoor unit capacity at the nominal temperature which is selected from the item 4.3 "Capacity Characteristic Curve" is 16.0kW at the cooling operation, 20.0kW at the heating operation under nominal conditions.

a) Actual Capacity of Outdoor Unit

Maximum Actual Capacity of Outdoor Unit

- = Outdoor Unit Capacity at Nominal Temperature selected from Total Indoor Unit Capacity
 - × Correction Factor According to Piping Length and Lift *1)
 - × Correction Factor According to Temperature Condition *2)
 - × Correction Factor According to Defrosting Operation *3)
 - *1): Refer to the diagram in item 4.6 "Correction Factor According to Piping Length".

Correction Factor of Cooling Capacity = 0.85

Correction Factor of Heating Capacity = 0.96

*2): Refer to the table in item 4.4 and 4.5 "Correction Factor According to Temperature Condition".

Correction Factor of Cooling Capacity = 1.04

Correction Factor of Heating Capacity = 0.86

*3): Refer to the table in item 4.7 "Correction Factor According to Defrosting Operation" Correction Factor = 0.85

Actual capacity of outdoor unit is

Cooling: $16.0 \text{kW} \times 0.85 \times 1.04 = 14.14$ Heating: $20.0 \text{kW} \times 0.96 \times 0.86 \times 0.85 = 14.04$

b) Actual Capacity of Each Indoor Unit

Actual Capacity of Each Indoor Unit

- = Actual Capacity of Outdoor Unit
 - × (Each Indoor Unit's Horsepower ÷ Summation of Each Indoor Unit Horsepower)

ex.

< RCI-1.5FSN3 >

Cooling Capacity: $14.14 \times (1.5\text{HP}/6.0\text{HP}) = 3.54\text{kW}$ Heating Capacity: $14.04 \times (1.5\text{HP}/6.0\text{HP}) = 3.51\text{kW}$

< RCI-2.0FSN3 >

Cooling Capacity: $14.14 \times (2.0 \text{HP}/6.0 \text{HP}) = 4.71 \text{kW}$ Heating Capacity: $14.04 \times (2.0 \text{HP}/6.0 \text{HP}) = 4.68 \text{kW}$

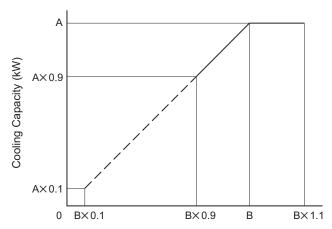
< RCI-2.5FSN3 >

Cooling Capacity: $14.14 \times (2.5 \text{HP}/6.0 \text{HP}) = 5.89 \text{kW}$ Heating Capacity: $14.04 \times (2.5 \text{HP}/6.0 \text{HP}) = 5.85 \text{kW}$

< Result >

Item			Room (1)	Room (2)	Room (3)	(1)+(2)+(3)
Selected Model		RCI-1.5FSN3	RCI-2.0FSN3	RCI-2.5FSN3	-	
Actual Capacity	Actual Maximum Cooling Capacity	kW	3.54	4.71	5.89	14.14
Actual Capacity	Actual Maximum Heating Capacity	kW	3.51	4.68	5.85	14.04
Design Load Cool Estin	Estimated Cooling Load	kW	2.92	3.86	4.88	11.66
	Estimated Heating Load	kW	3.29	4.34	5.49	13.12

4.3 Capacity Characteristic Curve


The following charts show the characteristics of outdoor unit capacity which corresponds with total horsepower of combined indoor unit, on standard condition with refrigerant piping of horizontal and 7.5m at length.

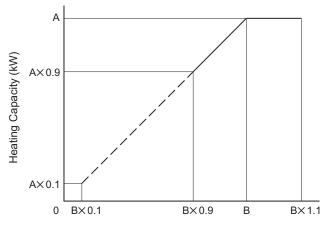
< Cooling Capacity >

• Condition

Indoor Air Inlet Temperature: 27.0°C DB (80.0°F DB), 19.0°C WB (66.2°F WB)

Outdoor Air Inlet Temperature: 35.0°C DB (95.0°F DB)

Model	A (kW)	B (HP)
RAS-4HVNC1	11.2	4
RAS-5HVNC1	14.0	5
RAS-6HVNC1	16.0	6


Total Horsepower of Combined Indoor Units (HP)

< Heating Capacity >

Condition

Indoor Air Inlet Temperature: 20.0°C DB (68.0°F DB)

Outdoor Air Inlet Temperature: 7.0°C DB (45.0°F DB), 6.0°C WB (43.0°F WB)

Model	A (kW)	B (HP)		
RAS-4HVNC1	14.0	4		
RAS-5HVNC1	18.0	5		
RAS-6HVNC1	20.0	6		

Total Horsepower of Combined Indoor Units (HP)

1-22 TCO-13001

The following shows the examples of outdoor unit capacity which corresponds with total horsepower of combined indoor unit, according to the "Capacity Characteristic Curve" on the previous page.

Outdoor Unit Capacity with Total Horsepower of Combined Indoor Unit

Indoor Unit	Outdoor Unit Capacity (kW)									
Total (HP)	RAS-4	HVNC1	RAS-5	HVNC1	RAS-6	HVNC1				
Total (FIF)	Cooling	Heating	Cooling	Heating	Cooling	Heating				
3.6	10.1	12.6		-						
3.7	10.4	13.0								
3.8	10.6	13.3								
3.9	10.9	13.7								
4.0	11.2	14.0		-						
4.1	11.2	14.0								
4.2	11.2	14.0								
4.3	11.2	14.0								
4.4	11.2	14.0								
4.5			12.6	16.2						
4.6			12.9	16.6						
4.7			13.2	16.9						
4.8			13.4	17.3						
4.9			13.7	17.6						
5.0			14.0	18.0						
5.1			14.0	18.0						
5.2			14.0	18.0						
5.3			14.0	18.0						
5.4			14.0	18.0	14.4	18.0				
5.5		_	14.0	18.0	14.7	18.3				
5.6		_			14.9	18.7				
5.7					15.2	19.0				
5.8					15.5	19.3				
5.9					15.7	19.7				
6.0					16.0	20.0				
6.1				-	16.0	20.0				
6.2					16.0	20.0				
6.3					16.0	20.0				
6.4					16.0	20.0				
6.5					16.0	20.0				
6.6					16.0	20.0				

The following table shows the outdoor unit capacity according to temperature condition.

Cooling Capacity for RAS-4HVNC1 (Connected Indoor Unit: 100%)

(kW)

		Indoor Air Inlet Dry Bulb / Wet Bulb (°C)										
Outdoor Air Inlet	2	3	2	6	2	7	2	8	3	1	3:	2
Dry Bulb (°C)	1	6	1	8	1	9	2	0	2	2	2	3
	TC	SHC	TC	SHC	TC	SHC	TC	SHC	TC	SHC	TC	SHC
25	10.9	9.3	11.5	9.5	11.8	9.6	12.1	9.6	12.7	9.8	13.1	9.9
30	10.6	9.1	11.2	9.3	11.5	9.4	11.8	9.5	12.5	9.7	12.8	9.8
35	10.3	9.0	10.9	9.2	11.2	9.3	11.5	9.4	12.1	9.6	12.4	9.6
40	10.0	8.8	10.6	9.1	10.9	9.2	11.2	9.3	11.7	9.4	11.9	9.5

Cooling Capacity for RAS-5HVNC1 (Connected Indoor Unit: 100%)

(kW)

	Indoor Air Inlet Dry Bulb / Wet Bulb (°C)											
Outdoor Air Inlet	2	3	2	6	2	7	2	8	3	1	3	2
Dry Bulb (°C)	1	6	1	8	1	9	2	0	2	2	2	3
	TC	SHC	TC	SHC	TC	SHC	TC	SHC	TC	SHC	TC	SHC
25	13.6	10.5	14.4	10.7	14.7	10.8	15.0	10.8	15.6	10.9	15.8	10.9
30	13.1	10.3	13.9	10.5	14.3	10.6	14.6	10.7	15.2	10.7	15.4	10.7
35	12.6	10.0	13.6	10.3	14.0	10.5	14.3	10.5	14.7	10.5	14.8	10.5
40	11.9	9.7	12.7	10.0	13.0	10.1	13.3	10.1	13.8	10.2	14.0	10.2

Cooling Capacity for RAS-6HVNC1 (Connected Indoor Unit: 100%)

(kW)

	Indoor Air Inlet Dry Bulb / Wet Bulb (°C)											
Outdoor Air Inlet	2	3	2	6	2	7	2	8	3	1	3	2
Dry Bulb (°C)	1	6	1	8	1	9	2	0	2	2	2	3
	TC	SHC	TC	SHC	TC	SHC	TC	SHC	TC	SHC	TC	SHC
25	15.9	11.7	16.7	11.8	17.0	11.8	17.3	11.8	17.9	11.8	18.1	11.7
30	15.5	11.5	16.3	11.6	16.6	11.6	17.0	11.7	17.5	11.6	17.7	11.6
35	14.7	11.0	15.6	11.3	16.0	11.3	16.3	11.4	16.8	11.3	16.9	11.3
40	13.9	10.7	14.7	10.9	15.1	11.0	15.5	11.0	16.0	11.0	16.2	11.0

TC: Total Capacity, SHC: Sensible Heat Capacity

NOTE:

- 1. The table shows the normal value of cooling operation at the maximum compressor frequency. In some cases, the value may change due to the compressor protection control.
- 2. The value on the table shows when the system is operated under the following conditions.

The indoor unit total capacity: 100% of outdoor unit capacity

The total piping length: 7.5m

The height difference: 0m

3. SHC values in the table are for the connection with 4-way Cassette Type Indoor Unit (Single Indoor Unit, Air Flow Volume: Hi).

For connection with other indoor units, refer to the item 4.8 "Sensible Heat Factor (SHF)."

1-24 TCO-13001

Heating Capacity for RAS-4HVNC1 (Connected Indoor Unit: 100%)

(kW)

Outdoor Air Inlet	Indoor Air Inlet Dry Bulb (°C)								
Wet Bulb (°C)	16	18	20	21	22	24			
vvet baib (C)	TC	TC	TC	TC	TC	TC			
-20	8.1	7.9	7.7	7.5	7.4	7.2			
-15	9.3	9.1	8.9	8.8	8.7	8.5			
-10	10.5	10.3	10.1	10.1	9.9	9.7			
-5	11.7	11.5	11.4	11.3	11.2	11.0			
0	12.9	12.7	12.6	12.5	12.5	12.3			
5	14.0	13.9	13.8	13.7	13.6	13.5			
6	14.2	14.1	14.0	13.9	13.9	13.7			
10	15.5	15.5	15.4	15.3	15.2	15.1			
15	17.1	17.1	17.1	17.0	16.9	16.8			

Heating Capacity for RAS-5HVNC1 (Connected Indoor Unit: 100%)

(kW)

						()			
Outdoor Air Inlet	Indoor Air Inlet Dry Bulb (°C)								
Wet Bulb (°C)	16	18	20	21	22	24			
vvet buib (C)	TC	TC	TC	TC	TC	TC			
-20	8.6	8.5	8.4	8.4	8.4	8.4			
-15	10.2	10.2	10.1	10.1	10.0	10.0			
-10	11.9	11.9	11.8	11.8	11.7	11.7			
-5	13.6	13.5	13.5	13.4	13.4	13.3			
0	15.8	15.7	15.6	15.5	15.5	15.4			
5	18.0	17.9	17.8	17.7	17.7	17.5			
6	18.2	18.1	18.0	17.9	17.9	17.7			
10	19.0	18.9	18.8	18.7	18.7	18.5			
15	19.7	19.6	19.5	19.4	19.4	19.1			

Heating Capacity for RAS-6HVNC1 (Connected Indoor Unit: 100%)

(kW)

Outdoor Air Inlet	Indoor Air Inlet Dry Bulb (°C)								
Wet Bulb (°C)	16	18	20	21	22	24			
vvet baib (C)	TC	TC	TC	TC	TC	TC			
-20	9.3	9.2	9.1	9.1	9.0	9.0			
-15	11.0	11.0	10.9	10.9	10.9	10.8			
-10	12.8	12.7	12.6	12.6	12.6	12.6			
-5	14.8	14.7	14.6	14.6	14.6	14.5			
0	17.4	17.3	17.2	17.1	17.1	17.0			
5	20.0	19.9	19.8	19.7	19.6	19.5			
6	20.3	20.1	20.0	19.9	19.9	19.7			
10	21.1	21.0	20.9	20.8	20.8	20.7			
15	22.2	22.0	21.9	21.8	21.8	21.6			

TC: Total Capacity

NOTE:

- 1. The table shows the normal value of heating operation at the maximum compressor frequency. In some cases, the value may change due to the compressor protection control.
- 2. The heating capacity on the table indicates the peak value, which does not include the capacity decrease caused by frost.
- 3. The value on the table shows when the system is operated under the following conditions. The indoor unit total capacity: 100% of outdoor unit capacity

The total piping length: 7.5m The height difference: 0m

4.4 Correction Factor According to Temperature Condition (Cooling)

Correction Factor for RAS-4HVNC1 (Connected Indoor Unit: 100%)

Outdoor Air Inlet	Indoor Air Inlet Wet Bulb (°C)							
Dry Bulb (°C)	16	18	19	20	22	23		
25	0.97	1.03	1.05	1.08	1.14	1.17		
30	0.95	1.00	1.03	1.05	1.11	1.14		
35	0.92	0.97	1.00	1.03	1.08	1.10		
40	0.89	0.95	0.97	1.00	1.04	1.06		

Correction Factor for RAS-5HVNC1 (Connected Indoor Unit: 100%)

Outdoor Air Inlet	Indoor Air Inlet Wet Bulb (°C)							
Dry Bulb (°C)	16	18	19	20	22	23		
25	0.97	1.03	1.05	1.07	1.11	1.13		
30	0.94	1.00	1.02	1.05	1.08	1.10		
35	0.90	0.97	1.00	1.02	1.05	1.06		
40	0.85	0.91	0.93	0.95	0.98	1.00		

Correction Factor for RAS-6HVNC1 (Connected Indoor Unit: 100%)

Outdoor Air Inlet	Indoor Air Inlet Wet Bulb (°C)							
Dry Bulb (°C)	16	18	19	20	22	23		
25	0.99	1.04	1.06	1.08	1.12	1.13		
30	0.97	1.02	1.04	1.06	1.10	1.11		
35	0.92	0.97	1.00	1.02	1.05	1.06		
40	0.87	0.92	0.95	0.97	1.00	1.01		

NOTE:

1. The table shows the normal value of cooling operation at the maximum compressor frequency. In some cases, the value may change due to the compressor protection control.

2. The value on the table shows when the system is operated under the following conditions.

The indoor unit total capacity: 100% of outdoor unit capacity

The total piping length: 7.5m The height difference: 0m

1-26 TCO-13001

4.5 Correction Factor According to Temperature Condition (Heating)

Correction Factor for RAS-4HVNC1 (Connected Indoor Unit: 100%)

Outdoor Air Inlet		Indoor Air Inlet Dry Bulb (°C)								
Wet Bulb (°C)	16	18	20	21	22	24				
-20	0.58	0.56	0.55	0.54	0.53	0.51				
-15	0.66	0.65	0.64	0.63	0.62	0.60				
-10	0.75	0.74	0.72	0.72	0.71	0.70				
-5	0.83	0.82	0.81	0.81	0.80	0.79				
0	0.92	0.91	0.90	0.90	0.89	0.88				
5	1.00	0.99	0.98	0.98	0.97	0.96				
6	1.01	1.01	1.00	1.00	0.99	0.98				
10	1.11	1.10	1.10	1.09	1.09	1.08				
15	1.22	1.22	1.22	1.21	1.21	1.20				

Correction Factor for RAS-5HVNC1 (Connected Indoor Unit: 100%)

Outdoor Air Inlet	Indoor Air Inlet Dry Bulb (°C)									
Wet Bulb (°C)	16	18	20	21	22	24				
-20	0.48	0.47	0.47	0.47	0.47	0.47				
-15	0.57	0.56	0.56	0.56	0.56	0.56				
-10	0.66	0.66	0.66	0.65	0.65	0.65				
-5	0.76	0.75	0.75	0.74	0.74	0.74				
0	0.88	0.87	0.87	0.86	0.86	0.86				
5	1.00	1.00	0.99	0.99	0.98	0.97				
6	1.01	1.01	1.00	1.00	0.99	0.98				
10	1.06	1.05	1.04	1.04	1.04	1.03				
15	1.09	1.09	1.08	1.08	1.08	1.06				

Correction Factor for RAS-6HVNC1 (Connected Indoor Unit: 100%)

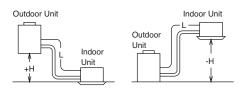
Outdoor Air Inlet	Indoor Air Inlet Dry Bulb (°C)									
Wet Bulb (°C)	16	18	20	21	22	24				
-20	0.46	0.46	0.46	0.45	0.45	0.45				
-15	0.55	0.55	0.54	0.54	0.54	0.54				
-10	0.64	0.63	0.63	0.63	0.63	0.63				
-5	0.74	0.74	0.73	0.73	0.73	0.72				
0	0.87	0.87	0.86	0.86	0.85	0.85				
5	1.00	1.00	0.99	0.98	0.98	0.97				
6	1.01	1.01	1.00	1.00	0.99	0.99				
10	1.06	1.05	1.04	1.04	1.04	1.03				
15	1.11	1.10	1.10	1.09	1.09	1.08				

NOTE:

- 1. The table shows the normal value of heating operation at the maximum compressor frequency. In some cases, the value may change due to the compressor protection control.
- 2. The heating capacity on the table indicates the peak value, which does not include the capacity decrease caused by frost.
- 3. The value on the table shows when the system is operated under the following conditions.

The indoor unit total capacity: 100% of outdoor unit capacity

The total piping length: 7.5m The height difference: 0m

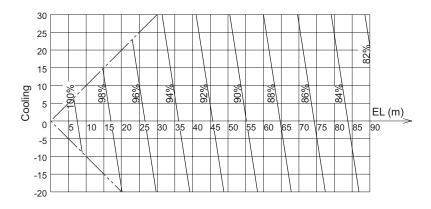

4.6 Correction Factor According to Piping Length

< Cooling Capacity >

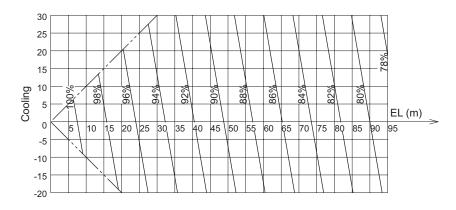
Correction Factor for Cooling Capacity According to Piping Length The correction factors are shown in the following figure.

Equivalent Piping Length for

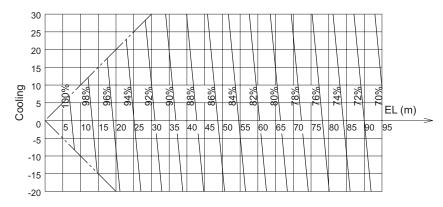
- One 90° Elbow is 0.5m.
- One 180° Bend is 1.5m.
- One Multi-Kit is 0.5m.


H: Vertical Distance Between Indoor Unit and Outdoor Unit in Meters

EL: Equivalent Total Distance Between Indoor Unit and Outdoor Unit in Meters (Equivalent One-Way Piping Length) H>0: Position of Outdoor Unit Higher Than Position of Indoor Unit

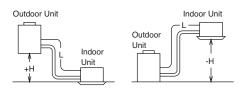

L: Actual One-Way Piping Length Between Indoor Unit and

Outdoor Unit in Meters


• RAS-4HVNC1

• RAS-5HVNC1

RAS-6HVNC1

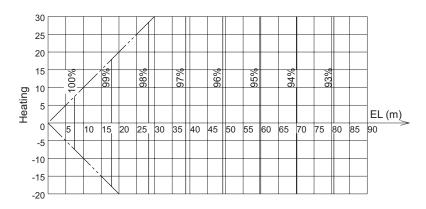

1-28 TCO-13001

< Heating Capacity >

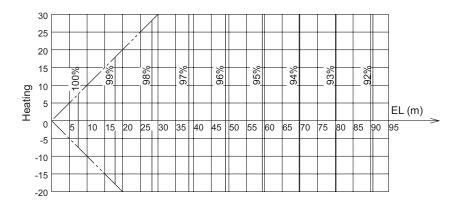
Correction Factor for Heating Capacity According to Piping Length The correction factors are shown in the following figure.

Equivalent Piping Length for

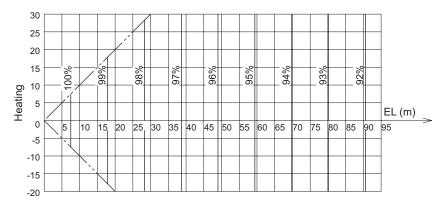
- One 90° Elbow is 0.5m.
- One 180° Bend is 1.5m.
- One Multi-Kit is 0.5m.


H: Vertical Distance Between Indoor Unit and Outdoor Unit in Meters

EL: Equivalent Total Distance Between Indoor Unit and Outdoor Unit in Meters (Equivalent One-Way Piping Length) H>0: Position of Outdoor Unit Higher Than Position of Indoor Unit


L: Actual One-Way Piping Length Between Indoor Unit and

Outdoor Unit in Meters


• RAS-4HVNC1

• RAS-5HVNC1

RAS-6HVNC1

4.7 Correction Factor According to Defrosting Operation

The heating capacity in the preceding paragraph, excludes the condition of the frost or the defrosting operation period.

In consideration of the frost or the defrosting operation, the heating capacity is corrected by the equation below.

Corrected Heating Capacity = Correction Factor× Heating Capacity

Outdoor Inlet Air Temp. (°C DB) (Humidity=85% RH)	-7	-5	-3	0	3	5	7
Correction Factor	0.95	0.93	0.88	0.85	0.87	0.90	1.0

NOTE:

The correction factor is not available for the special condition like a snowfall or a operation in a transitional period.

4.8 Sensible Heat Factor (SHF)

The sensible heat factor of indoor units at fan speed (Hi) based on the JIS Standard B8616, which is given in the below.

Outdoor		Indoor		SHF (Hi)								
Unit	Туре	Unit	RPI- *FSN2SQ	RCI- *FSN3	RCIM- *FSN3	RPI- *FSN2	RCD- *FSN2	RPC- *FSN3	RPK- *FSNSM3			
	Single	4.0HP	0.87	0.84	-	-	-	-	-			
4HP	Twin	2.0HP x 2	-	0.91	0.74	0.76	0.74	0.78	0.72			
405	Triple	-	-	-	-	-	-	-	-			
	Quad	1.0HP x 4	-	0.86	0.85	0.76	0.85	-	0.82			
	Single	5.0HP	0.88	0.77	-	-	-	-	-			
5HP	Twin	2.5HP x 2	-	0.91	-	0.72	0.71	0.78	0.74			
SHE	Triple	1.5HP x 3	-	0.89	0.77	0.77	0.77	0.79	0.73			
	Quad	-	-	-	-	-	-	-	-			
	Single	6.0HP	0.90	0.74	-	-	-	-	-			
6HP	Twin	3.0HP x 2	-	0.86	-	0.72	0.69	0.78	0.74			
UNP	Triple	2.0HP x 3	-	0.91	0.77	0.76	0.75	0.77	0.72			
	Quad	1.5HP x 4	-	0.88	0.78	0.77	0.77	0.85	0.73			

1-30 TCO-13001

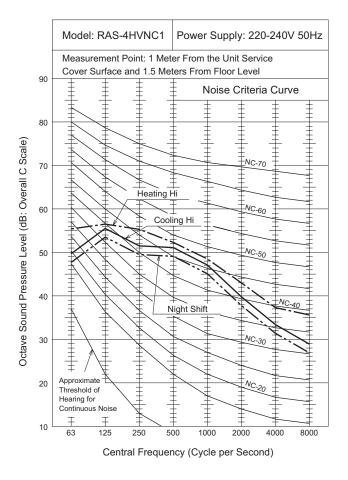
5. Electrical Data

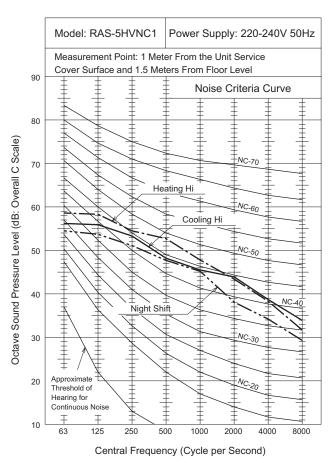
< Outdoor Unit (220-240V/50Hz, 220V/60Hz) >

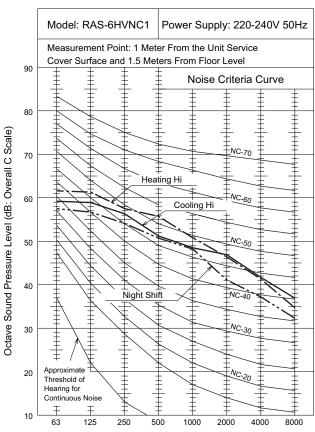
	Unit Ma	in Pov	ver	Applicable Voltage		Compressor Motor						Maximum
Model	VOL	PH	HZ	Maximum	Minimum	PH	STC	Coolii Operat	0	Heatir Operat	0	Current
								RNC	IPT	RNC	IPT	RNC
RAS-4HVNC1	220/240		50				-	11.9/10.8	2.51	10.5/9.6	2.21	26.3
RAS-5HVNC1		1		264	198	3	-	16.3/14.9	3.47	15.8/14.5	3.36	26.4
RAS-6HVNC1	220		60				-	17.4/15.9	3.70	19.8/18.1	4.21	26.4

VOL: Rated Unit Power Supply Voltage (Plated)(V) RNC: Running Current (A)

HZ: Frequency (Hz) PH: Phase (ϕ) STC: Starting Current (A) IPT: Input (kW)


NOTES:


1. The above performance data is based on 7.5m equivalent piping length and 0m piping lift.


2. These data are based on the same conditions as the nominal heating and cooling capacities.

3. The compressor is started by an inverter, resulting in extremely low starting current.

6. Sound Data

Central Frequency (Cycle per Second)

1-32 TCO-13001

7. Working Range

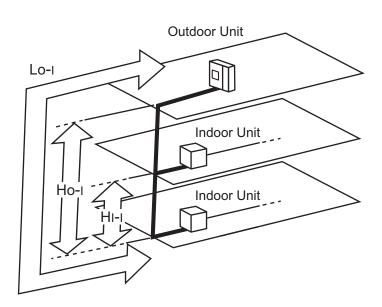
Power Supply

Working Voltage: 90% to 110% of the Rated Voltage

Voltage Imbalance: Within a 3% Deviation from Each Voltage at the Main Terminal

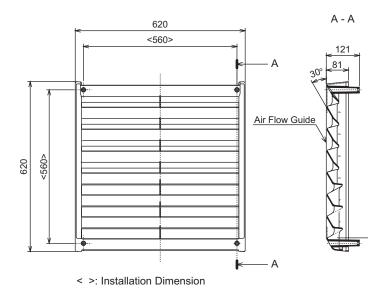
Starting Voltage: Higher than 85% of the Rated Voltage

Temperature Range


The temperature range are given in the following table.

		Cooling Operation	Heating Operation
Indoor	Minimum	21°C DB / 15°C WB	15°C DB
Temperature	Maximum	32°C DB / 23°C WB	27°C DB
Outdoor	Minimum	-5°C DB	-20°C WB
Temperature	Maximum	46°C DB	15°C WB

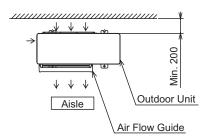
DB: Dry Bulb, WB: Wet Bulb


Piping Provision

- Maximum Piping Length (Actual Length) Lo-I:
 - 70m (RAS-4HVNC1)
 - 75m (RAS-5HVNC1 and RAS-6HVNC1)
- Maximum Piping Lift between Outdoor Unit and Indoor Unit Ho-I:
 - 30m (When Outdoor Unit is Higher than Indoor Unit)
 - 20m (When Indoor Unit is Higher than Outdoor Unit)
- Maximum Piping Lift between Indoor Units Hi-i:
 - 3m

8. Optional Accessories

8.1 Air Flow Guide: AG-335A



< Installation >

- (1) To attach the air flow guide, remove the 4 fixing screws at corner of resin air outlet grille. Then, attach the air flow guide by 4 screws (accessory). (Tightening Torque: 2.4 3.1N.m)
- (2) When the air flow guide is attached, do not remove the air outlet grille. (If it is removed, there is danger of touching fan rotating parts.)

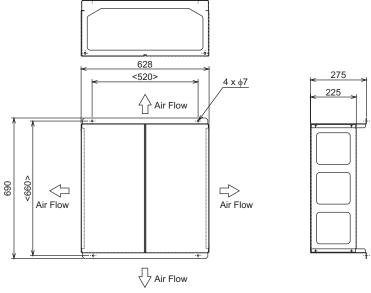
< Service Space >

NOTES:

- 1. For the left and right air outlets, maintain the enough service space for outlet air.
- 2. For the air outlet downward, install a foundation in order to secure enough service space downward.
- 3. If multiple outdoor units are installed serially, the upward air outlet shall be utilized.

1-34 TCO-13001

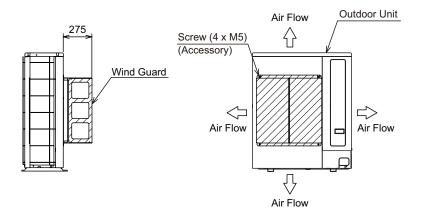
Specifications

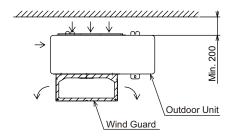

Item	Model	AG-335A		
Applicable Outdoor Unit Model (RAS-**HVNC1)		4 to 6		
Quantity (per outdoor unit)		1		
Air Flow Direction		Upward (Downward), Left and Right		
Material		PP		
Color		Natural Gray		
Weight	kg	1.9		
Accessory		Fixing Screw (M5 (SUS) x 20ℓ x 4), Installation Manual		
Installation Restriction		It can not be utilized with the wind guard and the snow-protection hood.		

NOTES:

- 1. This optional air flow guide lets the outlet air to flow upward (downward) or left and right if there are obstacles in front of the outdoor unit.
- 2. Do not put any obstacles at the air flow direction.

 If there are obstacles, the short-circuit will occur or the air flow volume will decrease. Secure the appropriate service space according to the installation and maintenance manual of the outdoor unit.
- 3. For the left and right air outlets, do not install other outdoor unit next to. Other outdoor unit will suck the air flow from the air flow guide.
- 4. The operation noise is slightly increased by attaching air flow guide.
- 5. The snow protection hood shall be utilized in snow covered area.
- 6. In the case of icing at the air outlet in cold area, melt ice by lukewarm water (approx. 40°C). If the ice is shaved by hummer etc., the air flow guide may be damaged.


8.2 Wind Guard: WSP-335A


< >: Installation Dimension

< Installation >

- (1) To attach the air flow guide, remove the 4 fixing screws at corner of resin air outlet grille. Then, attach the air flow guide by 4 screws (accessory). (Tightening Torque: 2.4 3.1N.m)
- (2) When the air flow guide is attached, do not remove the air outlet grille. (If it is removed, there is danger of touching fan rotating parts.)

< Service Space >

NOTES:

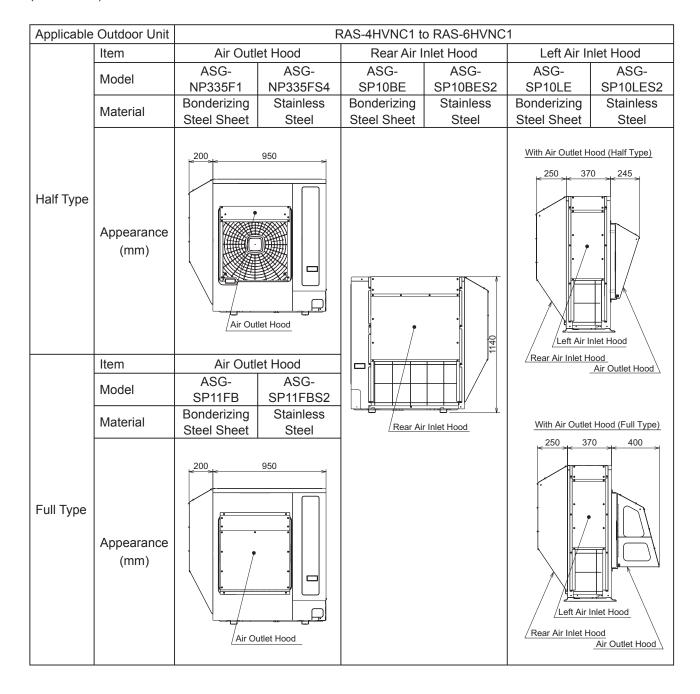
- 1. Secure the appropriate service space both left and right side of outdoor unit.
- 2. Do not put any obstacles at the air flow direction.

1-36 TCO-13001

Specifications

Item	Model	WSP-335A		
Applicable Outdoor Unit Model (RAS-**H	VNC1)	4 to 6		
Quantity (per outdoor unit)		1		
Material		Galvanized Steel Sheet + Baked with Synthetic Resin Paint		
Color		Natural Gray (1.0Y 8.5 / 0.5)		
Weight	kg	5.5		
Accessory		Fixing Screw (M5 (SUS) x 12ℓ x 4), Installation Manual		
Installation Restriction		It can not be utilized with the air flow guide and the snow-protection hood.		

NOTES:

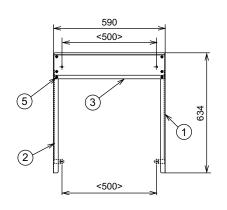

- 1. This optional wind guard is to protect the air outlet from the strong wind.
- 2. Do not put any obstacles at the air flow direction.

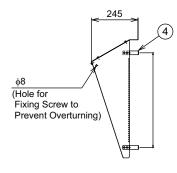
 If there are obstacles, the short-circuit will occur or the air flow volume will decrease.

 Secure the appropriate service space according to the installation and maintenance manual of the outdoor unit
- 3. Do not install other outdoor unit next to air outlet direction. Other outdoor unit will suck the air flow from the wind guard.
- 4. The operation noise is slightly increased by attaching wind guard.
- 5. The snow protection hood shall be utilized in snow covered area.
- 6. In the case of icing at the air outlet in cold area, melt ice by lukewarm water (approx. 40°C). If the ice is shaved by hummer etc., the wind guard may be damaged.

8.3 Snow Protection Hood

The snow protection hood shall be utilized to protect from mal-defrost in low ambient temperature (below -5°C).

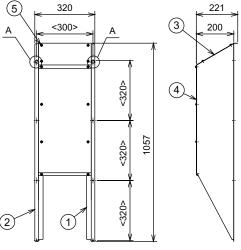



1-38 TCO-13001

Half Type: ASG-NP335F1/FS4, ASG-SP10BE/10BES2, ASG-SP10LE/10LES2

< Air Outlet Hood >

< >: Installation Dimension


No.	Part Name	Q'ty
1	Right Plate	1
2	Left Plate	1
3	Front Plate	1
4	Fixing Stay	4
5	Assembling Screw (Accessary)	6

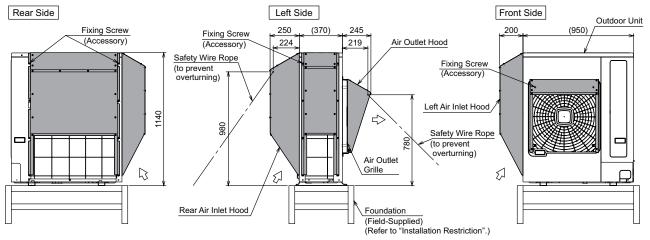
< Rear Air Inlet Hood >

783 271 3 2 x \phi8 <763> 250 (5)(Hole for Fixing Screw to Prevent Overturning) <320> <320> 4

320		
<300>		3
•	<u> </u>	 - \

< Left Air Inlet Hood >

Q'ty No. Part Name Rear Left 1 Right Plate 2 Left Plate 1 1 3 Front Plate (Upper) 1 1 4 Front Plate (Lower) 1 1 (5) Assembling Screw (Accessary) 14 12


Enlarged View of A (Fixing Hole)

TCO-13001

OPTIONAL ACCESSORIES

< Installation >

NOTE:
The fixing screws (accessory) shall be utilized to attach the snow protection hood to the outdoor unit.

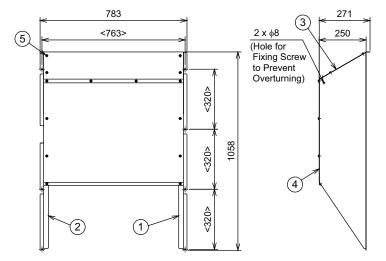
Specifications

Part Name		Air Outl	et Hood	Rear Air I	nlet Hood	Left Air Ir	nlet Hood	
Item	Model	ASG- NP335F1	ASG- NP335FS4	ASG- SP10BE	ASG- SP10BES2	ASG- SP10LE	ASG- SP10LES2	
Applicable Outdoor U (RAS-**HVNC1)	nit Model	141 3331 1	141 0001 04	4 to		OI TOLL	OI TOLLOZ	
Quantity (per outdoor	unit)			,				
Material		Bonderized Sheet	Stainless	Bonderized Sheet	Stainless	Bonderized Sheet	Stainless	
Color		Natural Gray (1.0Y 8.5/0.5)		Natural Gray (1.0Y 8.5/0.5)		Natural Gray (1.0Y 8.5/0.5)		
Weight	kg	3.	.0	10	.0	6.	.0	
Configuration				Assembl	y on site			
Accessory	Hood	1		1		1		
	Fixing Screw [Spare]	M5 (SUS) x 12ℓ x 6 [2]		M5 (SUS) x 12ℓ x 9 [2]		M5 (SUS) x 12ℓ x 10 [2]		
	Assembling Screw [Spare]	M5 (SUS) x 12ℓ x 6	M5 (SUS) x 14ℓ x 8 [2]	M5 (SUS) x 12ℓ x 14	M5 (SUS) x 14ℓ x 16 [2]	M5 (SUS) x 12ℓ x 12	M5 (SUS) x 14ℓ x 14 [2]	
		Installation Manual						
Installation Restriction	n	Consider s affected by snow accurextra servic When mult between the	 The air outlet hood cannot be used with the wind guard and the air flow guide. Consider snow accumulation when installing the outdoor unit. To avoid being affected by snow, install the unit on a high foundation or on a frame (higher than snow accumulation) and fix the unit securely with anchor bolts. In addition, provide extra service space considering snow accumulation and snow removal. When multiple outdoor units are installed in a row, keep at least 100mm of space between the outdoor units. Do not put any obstacles on the air outlet side. Any obstacle will lead to a short circuit or an air flow volume decrease. 				being her than ion, provide of space	
Caution		supplied). 2. If the outdoinstall a pa 3. The outdoin strong w	1. Apply a touch-up paint to screw parts or caulk them for corrosion prevention (field-					

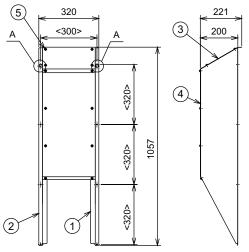
NOTES:

- 1. This snow protection hood is to prevent snow from entering the outdoor unit and to protect the unit from snow damage.
- 2. This snow protection hood is for an on-site assembly. When assembling it, tighten the screws securely. If not, the screws are loosened, which may cause the vibration of the unit.
- 3. The operation noise is slightly increased by attaching snow protection hood.
- 4. Though this snow protection hood is made of the corrosion-resistant materials, it is subject to corrosion in places where strongly-acidic or strongly-alkaline materials, or other corrosive materials continuously present. Contact your distributor or dealer of HITACHI for details of the outdoor unit subjected to anti-corrosive treatment.
- 5. The operating performance of the outdoor unit with the snow protection hood might decrease depending on the service conditions.

1-40 TCO-13001


Full Type: ASG-SP11FB/11FBS2, ASG-SP10BE/10BES2, ASG-SP10LE/10LES2

Air Outlet Hood > 590 2 x \(\phi \)8 (Hole for Fixing Screw to Prevent Overturning) 3 6 4 x \(\phi \)7 520> 1 6 5 5 5 5 6 5 5 5 5 6


< >: Installation Dimension

No.	Part Name	Q'ty
1	Right Plate	1
2	Left Plate	1
3	Front Plate (Upper)	1
4	Front Plate (Lower)	1
(5)	Fixing Plate	1
6	Assembling Screw (Accessary)	15

< Rear Air Inlet Hood >

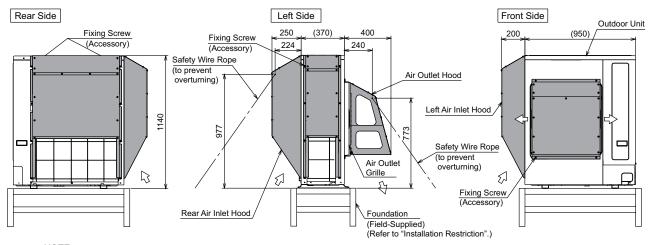
< Left Air Inlet Hood >

Q'ty Part Name No. Rear Left 1 Right Plate 1 1 Left Plate 2 1 1 3 Front Plate (Upper) 1 1 Front Plate (Lower) 4 1 1

Assembling Screw (Accessary)

(5)

Enlarged View of A (Fixing Hole)



TCO-13001 1-41

12

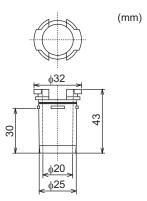
OPTIONAL ACCESSORIES

< Installation >

NOTE:
The fixing screws (accessory) shall be utilized to attach the snow protection hood to the outdoor unit.

Specifications

Part Name		Air Outlet Hood		Rear Air Inlet Hood		Left Air Inlet Hood		
Item	Model		ASG- SP11FBS2	ASG- SP10BE	ASG- SP10BES2	ASG- SP10LE	ASG- SP10LES2	
Applicable Outdoor U (RAS-**HVNC1)	Init Model		SP11FB SP11FBS2 SP10BE SP10BES2 SP10LE SP10LES2 4 to 6					
Quantity (per outdoor	· unit)			1	1			
Material		Bonderized Sheet	Stainless	Bonderized Sheet	Stainless	Bonderized Sheet	Stainless	
Color		Natural Gray (1.0Y 8.5/0.5)		Natural Gray (1.0Y 8.5/0.5)		Natural Gray (1.0Y 8.5/0.5)		
Weight	kg	7.	.0	10	0.0	6	.0	
Configuration				Assembly	y on site			
Accessory	Hood	1		1		1	1	
	Fixing Screw [Spare]	M5 (SUS) x 12ℓ x 6 [2]		M5 (SUS) x 12ℓ x 9 [2]		M5 (SUS) x 12ℓ x 10 [2]		
	Assembling Screw [Spare]	M5 (SUS) x 12ℓ x 15	M5 (SUS) x 14ℓ x 17 [2]	M5 (SUS) x 12ℓ x 14	M5 (SUS) x 14ℓ x 16 [2]	M5 (SUS) x 12ℓ x 12	M5 (SUS) x 14ℓ x 14 [2]	
		Installation Manual						
Installation Restriction		Consider s affected by snow accu extra servid When mult between th	now accumulate snow, install the mulation) and force space consiple outdoor unite outdoor units	t be used with the tion when install the unit on a high ix the unit secured dering snow accepts are installed and to rout an art circuit or an a	ling the outdoon in foundation or rely with ancho cumulation and in a row, keep by obstacles on	r unit. To avoid on a frame (hig r bolts. In addit snow removal. at least 100mm the air outlet si	being ther than ion, provide	
Caution		 Apply a touch-up paint to screw parts or caulk them for corrosion prevention (field-supplied). If the outdoor unit is installed in an area where snow blows upward from the ground, install a partition (field-supplied). The outdoor unit does not have sufficient strength to hold the snow protection hood in strong wind or earthquake. Attach the stay or safety wire rope etc. to the snow protection hood to protect it from falling down. 				n the ground,		


NOTES:

- 1. This snow protection hood is to prevent snow from entering the outdoor unit and to protect the unit from snow damage.
- 2. This snow protection hood is for an on-site assembly. When assembling it, tighten the screws securely. If not, the screws are loosened, which may cause the vibration of the unit.
- 3. The operation noise is slightly increased by attaching snow protection hood.
- 4. Though this snow protection hood is made of the corrosion-resistant materials, it is subject to corrosion in places where strongly-acidic or strongly-alkaline materials, or other corrosive materials continuously present. Contact your distributor or dealer of HITACHI for details of the outdoor unit subjected to anti-corrosive treatment.
- 5. The operating performance of the outdoor unit with the snow protection hood might decrease depending on the service conditions.

1-42 TCO-13001

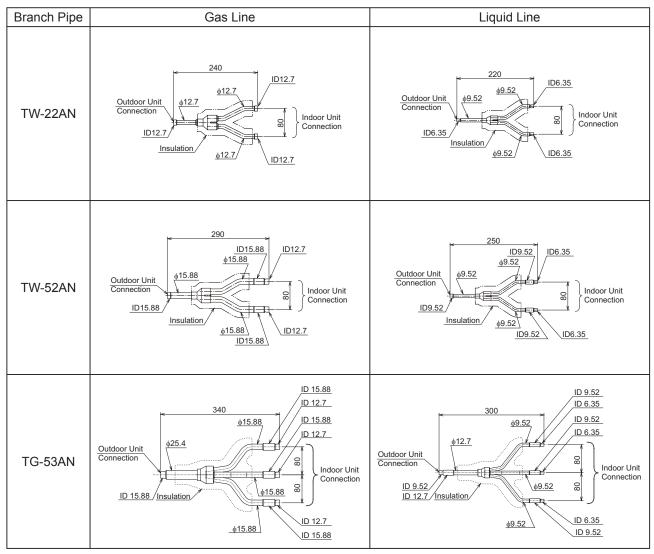
8.4 Drain Kit: DBS-26


When the base of the outdoor unit is temporarily utilized as a drain receiver and the drain water in it is discharged, this drain boss is utilized to connect the drain piping.

< Connecting Procedure >

Connecting Drain Discharge Boss

- (1) Insert the rubber cap into the drain boss up to the extruded portions. (4 Portions around the Boss)
- (2) Insert the boss into the unit base, and turn approximately 40 degree counterclockwise.
- (3) Size of the drain boss is VP25.
- (4) A drain pipe should be field-supplied.

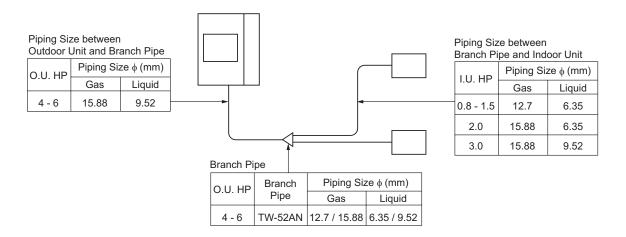

NOTES:

- 1. Do not use this drain boss set in a cold area, because the drain water may freeze.
- 2. This drain boss is not sufficient to collect all the drain water.

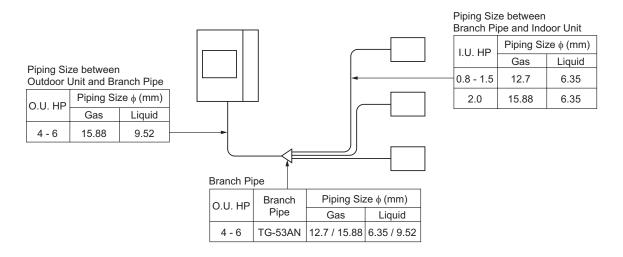
 If collecting drain water is completely required, provide a drain-pan that is bigger than the unit base, and install it under the unit with drainage.

8.5 Branch Pipe: TW-22AN, TW-52AN, TG-53AN

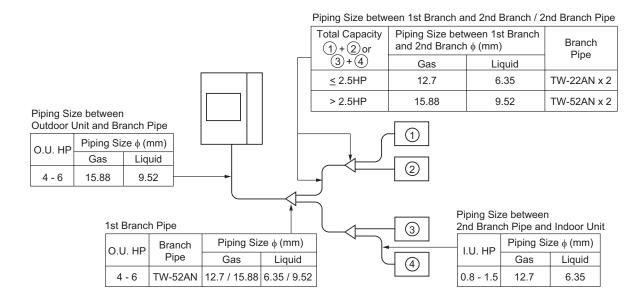
Combination	HP	Branch	Model
Twin	4 - 6	First Branch	TW-52AN
Triple	4 - 6	First Branch	TG-53AN
	4	First Branch	TW-52AN
Quad		Second Branch	TW-22AN x 2
Quad		First Branch	TW-52AN
	5, 6	Second Branch	TW-52AN x 2

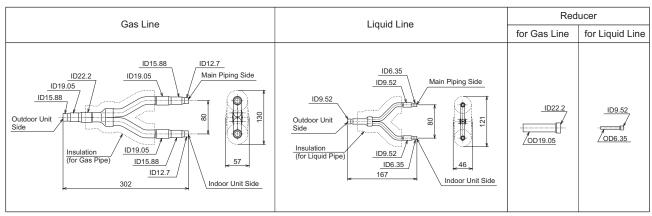


Unit: mm, ID: Inner Diameter, OD: Outer Diameter

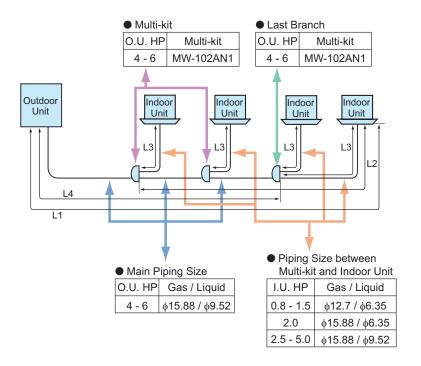

1-44 TCO-13001

< Combinations Example >


* Twin Combination


* Triple Combination

* Quad Combination



8.6 Multi-Kit for Line Branch: MW-102AN1

Unit: mm, ID: Inner Diameter, OD: Outer Diameter

< Line Branch for Multiple Connection >

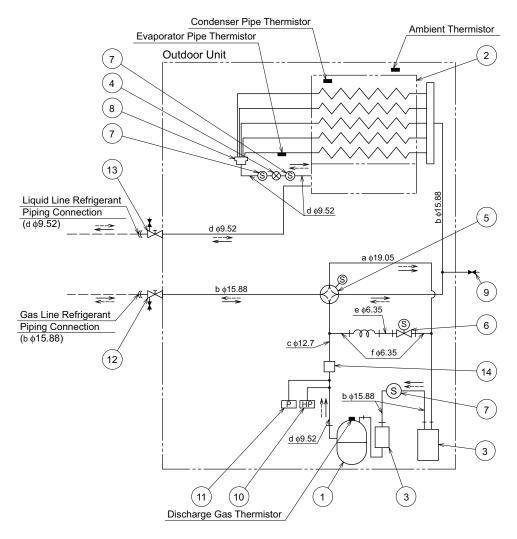
Item	4	5	6	
Maximum Number of Connectable I.U.		2 - 4		
Defrigerent Dining Length: 14	Actual Length	≤ 70m	<u>≤</u> 75m	
Refrigerant Piping Length: L1	Equivalent Length	<u><</u> 90m	≤ 95m	
Piping Length between 1st Branch and Ea	ach I.U.: L2	<u>≤</u> 20m		
Piping Length between Branch Pipe and I	Each I.U.: L3	<u>≤</u> 10m		
Height Difference between O.H. and I.H.	O.U. is Higher	≤ 30m		
Height Difference between O.U. and I.U.	O.U. is Lower	≤ 20m		
Height Difference between I.U. and I.U.	≤ 3m			
Total Piping Length: Sum of L3 + L4		<u><</u> 70m	<u>≤</u> 7	'5m

1-46 TCO-13001

9. Component Data

Outdoor Heat Exchanger and Fan

Model		RAS-4HVNC1	RAS-5HVNC1	RAS-6HVNC1	
Heat Exchanger Type		Multi-Pass Cross Finned Tube			
Tube Material			Copper Tube		
Outer Diameter	mm	7	7	7	
Rows		2	2	2	
Number of Tube/Coil		108	108	108	
Fin Material			Aluminum		
Pitch	mm	1.4	1.4	1.4	
Maximum Operating Pressure	MPa	4.15	4.15	4.15	
Total Face Area	m ²	50.5	50.5	50.5	
Number of Coil/Unit		1	1	1	
Outdoor Fan			Direct Drive Propeller Fan		
Number/Unit		1	1 1	1	
Outer Diameter	mm	544	544	544	
Revolution	rpm	730	730	820	
Nominal Air Flow	m³/min.	62	68	80	
	(ℓ/s)	(1,033)	(1,133)	(1,333)	
Outdoor Fan Motor					
Starting Method			Drip-Proof Type Enclosure		
Nominal Output	W	200	200	200	
Quantity		1	1	1	
Insulation Class		E	E	E	


Compressor

Compressor N	Model	EU260XC1	HB36PHD-A1S2	
Applicable Model		RAS-4HVNC1 RAS-5, 6HVNC1		
Туре		Hermetic Scroll		
Air Tight Pressure				
Discharge	MPa	4.15	4.15	
Suction	MPa	2.21	2.21	
Motor Type			•	
Starting Method		Inverter-Driven		
Poles		4	6	
Insulation		E	Е	
Oil Type		HAF63D1 or α68HES-H FVC68D		

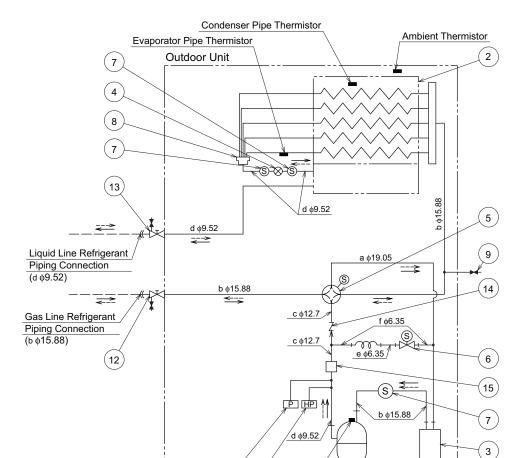
10. Control System

10.1 Refrigeration Cycle

Model: RAS-4HVNC1

: Refrigerant Flow Direction (Cooling Operation)
 ---: Refrigerant Flow Direction (Heating Operation)
 ----: Field Refrigerant Piping

----: Field Refrigerant Pipir


---: Flare Connection

---: Brazing Connection

Mark	Part Name
1	Compressor
2	Heat Exchanger
3	Accumulator
4	Micro-Computer Control Expansion Valve
5	Reversing Valve
6	Solenoid Valve for Gas Bypass
7	Strainer
8	Distributor
9	Check Joint
10	High Pressure Switch for Protection
11	Pressure Switch for Control
12	Stop Valve for Gas Line
13	Stop Valve for Liquid Line
14	Silencer

Mark	OD x T	Material
а	19.05 x 1.2	
b	15.88 x 1.0	
С	12.7 x 1.0	C1220T-O
d	9.52 x 0.8	C12201-O
е	6.35 x 1.07	
f	6.35 x 0.7	

1-48 TCO-13001

(11)

Discharge Gas Thermistor

(10)

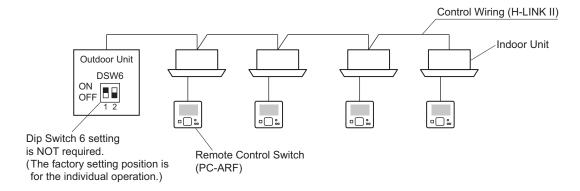
(1

Models: RAS-5HVNC1 and RAS-6HVNC1

: Refrigerant Flow Direction (Cooling Operation)
 ---: Refrigerant Flow Direction (Heating Operation)
 ----: Field Refrigerant Piping

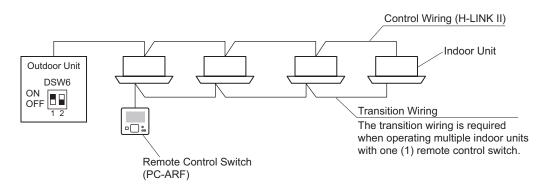
----: Field Refrigerant Pipi

(: Flare Connection


---: Brazing Connection

Mark	Part Name
1	Compressor
2	Heat Exchanger
3	Accumulator
4	Micro-Computer Control Expansion Valve
5	Reversing Valve
6	Solenoid Valve for Gas Bypass
7	Strainer
8	Distributor
9	Check Joint
10	High Pressure Switch for Protection
11	Pressure Switch for Control
12	Stop Valve for Gas Line
13	Stop Valve for Liquid Line
14	Check Valve
15	Silencer

Mark	OD x T	Material
а	19.05 x 1.2	
b	15.88 x 1.0	
С	12.7 x 1.0	C1220T-O
d	9.52 x 0.8	012201-0
е	6.35 x 1.07	
f	6.35 x 0.7	


10.2 System Control

10.2.1 Individual Operation

< Individual Thermo ON/OFF Operation >

The individual Thermo ON/OFF is available to be controlled each indoor unit even if multiple indoor units are controlled simultaneously by one remote control switch.

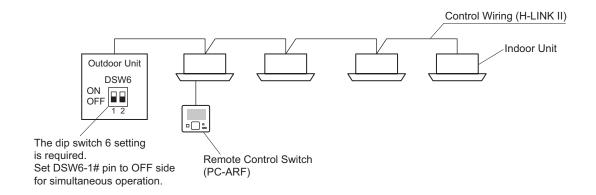
Control Method	by each Optional Remote Control Switch
Operation Method	by One Group
(1) ON/OFF	Yes
(2) Setting of Operation Mode	Yes *1)
(3) Room Temperature Setting	Yes
(4) Fan Speed Setting	Yes
(5) Timer Setting	Yes
(6) ON/OFF by Timer Control	Yes
(7) Operation Indication	Yes
(8) Alarm Indication	Yes
(9) Self-Checking	Yes
(10) Test Mode	Yes
(11) Individual Louver Setting	Yes *2)
(12) Motion Sensor Setting	Yes *3)

Yes: Available

- *1): Cooling and heating can not be operated simultaneously.
- *2): Only for RCI-FSN3 series with PC-ARF
- *3): Only for RCI-FSN3 + P-AP160NAE + PC-ARF

Do not mix other indoor unit, air panel (P-AP160NA1) and remote control switch (PC-AR) if set from one remote control switch.

NOTE:


The detail of electrical wiring shall be referred to "Installation and Maintenance Manual" of each.

1-50 TCO-13001

10.2.2 Simultaneous Operation

This unit can be operated simultaneously with twin, triple and quad combinations.

One remote control switch (PC-ARF) can control without transition wiring up to 4 units of FSN2 series or later model types (H-LINK II supported models) simultaneously. (Available if it is with the transition wiring.)

Control Method	by One Optional Remote Control Switch
Operation Method	by One Group
(1) ON/OFF	Yes
(2) Setting of Operation Mode	Yes *1)
(3) Room Temperature Setting	Yes
(4) Fan Speed Setting	Yes
(5) Timer Setting	Yes
(6) ON/OFF by Timer Control	Yes
(7) Operation Indication	Yes
(8) Alarm Indication	Yes
(9) Self-Checking	Yes
(10) Test Mode	Yes
(11) Individual Louver Setting	Yes *2)
(12) Motion Sensor Setting	Yes *3)

Yes: Available

- *1): Only if all units in one group are connected to the same outdoor unit.
- *2): Only for RCI-FSN3 series with PC-ARF
- *3): Only for RCI-FSN3 + P-AP160NAE + PC-ARF
 Do not mix other indoor unit, air panel (P-AP160NA1) and remote control switch (PC-AR)
 if set from one remote control switch.

NOTE:

The detail of electrical wiring shall be referred to "Installation and Maintenance Manual" of each.

10.3 General Description of Refrigerant Cycle Control

No.		Item	Detail		
	Cooling Operation	Comp. Frequency Control	To determine the compressor frequency depending on (a) and (b).		
		for Individual Operation	To determine the compressor frequency from (a), (b) and (c).		
		Indoor Exp. Valve Control	Quasi PI Control: To determine the indoor expansion valve opening so as to keep (d) at an optimum value.		
1		for Individual Operation	To change the indoor expansion valve opening when the number of operating indoor units is changed.		
'		Outdoor Exp. Valve Control	EVO: 480pls (Fully Opened)		
		Outdoor Fan Control	To control the fan steps so that the heat exchanger temperature is within a stable temperature range.		
		Reversing Valve Control	Reversing Valve: OFF		
		Control of Solenoid Valve for High/Low Pressure Bypass (SVA)	at Start-up and when High Pressure Increase Protection activated: ON		
		High/Low Pressure Control	SVA: ON (during Operation Stop)		
		Comp. Frequency Control	To determine the compressor frequency depending on (a) and (b).		
		for Individual Operation	To determine the compressor frequency from (a), (b) and (c).		
	Heating Operation	Indoor Exp. Valve Control	To determine the indoor expansion valve opening so that the indoor liquid pipe temperature (trl) is at an optimum level.		
		for Individual Operation	To change the indoor expansion valve opening when the number of operating indoor units is changed.		
2		Outdoor Exp. Valve Control	Quasi PI Control: To determine the outdoor expansion valve opening so as to keep the temperature at the top of the compressor at an optimum level.		
2		for Individual Operation	When Operating Indoor Unit Number Changed: To determine the outdoor expansion valve opening from the compressor frequency ratio before/after the change and Quasi PI Control.		
		Outdoor Fan Control	To control the fan steps depending on the outdoor liquid pipe temperature and temperature at the top of the compressor.		
		Reversing Valve Control	Reversing Valve: ON		
		Control of Solenoid Valve for High/Low Pressure Bypass (SVA)	at Start-up and when High Pressure Increase Protection activated: ON		
		High/Low Pressure Control	SVA: ON (during operation stop)		
	Defrosting Operation	Comp. Frequency Control	Fixed Compressor Frequency		
		Indoor Exp. Valve Control	To determine the indoor expansion valve opening depending on the temperature at the top of the compressor (Td).		
		Outdoor Exp. Valve Control	EVO: 480pls (Fully Opened)		
3		Outdoor Fan Control	To stop the outdoor fan.		
		Reversing Valve Control	Reversing Valve: OFF		
		Control of Solenoid Valve for High/Low Pressure Bypass (SVA)	at Start-up: ON		
4	Comp. Preh	eating Control	Crankcase Heater Control		

- (a): Difference between Indoor Inlet Air Temperature and Setting Temperature
- (b): Amount of Temperature Difference Change
- (c): Capacity Ratio between Operating Indoor Unit and Outdoor Unit
- (d): Temperature Difference between Indoor Gas Pipe and Indoor Liquid Pipe (= Indoor Gas Pipe Temperature Indoor Liquid Pipe Temperature)

1-52 TCO-13001

■ Compressor Capacity Control

Compressor frequency is determined by multiplying the compressor frequency depending on the capacity of operating indoor units by the factor in the table below. In a normal operating state (except in a transient control state of startup control, defrosting control, etc.), compressor frequency is controlled depending on difference between indoor inlet air temperature and setting temperature and amount of temperature difference change.

< Cooling Operation >

	Qc <u><</u> -4	-4 < Qc ≤ -2	-2 < Qc <u><</u> -1	-1 < Qc ≤ 0	0 < Qc <u><</u> 1	1 < Qc <u><</u> 3	3 < Qc
	0.25	0.30	0.35	0.40	0.45	0.50	0.55
∠ Tc = 1	0.35	0.40	0.45	0.50	0.55	0.60	0.65
∠ Tc = 2	0.50	0.55	0.60	0.65	0.70	0.75	0.80
	0.65	0.70	0.75	0.80	0.85	0.90	0.95
∠ Tc = 4	0.75	0.80	0.85	0.90	0.95	1.00	1.05
∠ Tc = 5	0.85	0.90	0.95	1.00	1.05	1.10	1.15
	0.85	0.90	0.95	1.00	1.05	1.10	1.15
	0.90	0.95	1.00	1.05	1.10	1.15	1.20
∠ Tc = 8	0.95	1.00	1.05	1.10	1.15	1.20	1.20
∠ Tc = 9	1.00	1.05	1.10	1.15	1.20	1.20	1.20
	1.05	1.10	1.15	1.20	1.20	1.20	1.20

NOTES:

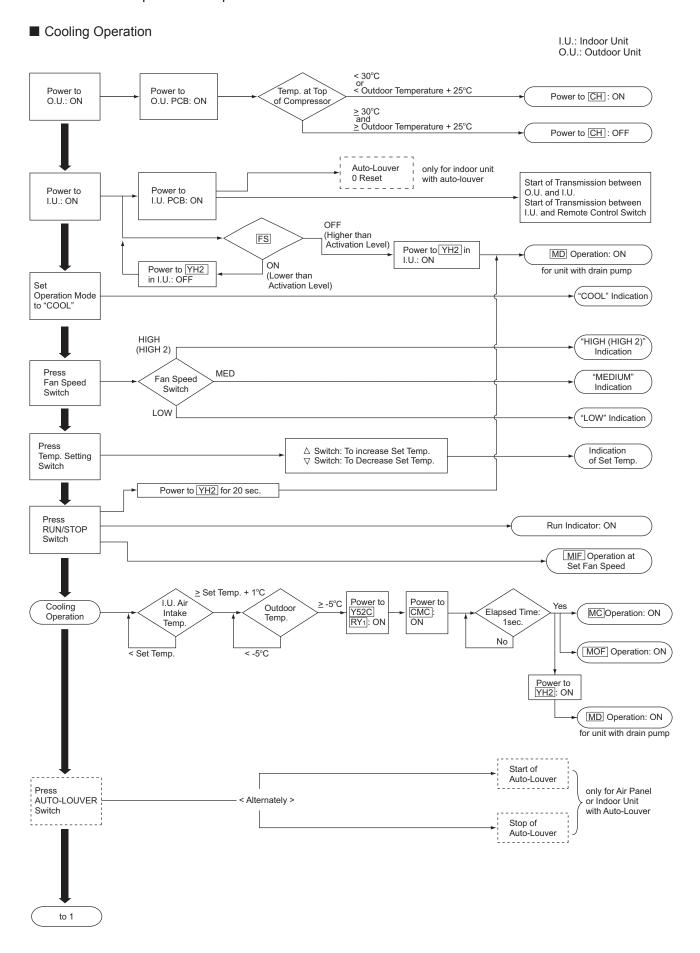
1. ∠ Tc (n): Indoor Inlet Air Temp. - Setting Temp.

2. ∠ Tc (n-1): Last Time ∠ Tc (n)

3. Qc: ∠ Tc (n) - ∠ Tc (n-1)

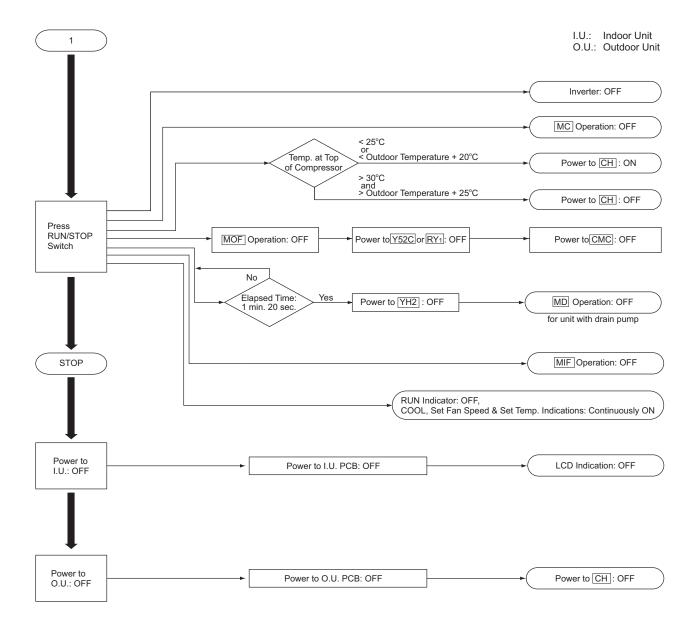
< Heating Operation >

	Qh ≤ -4	-4 < Qh ≤ -2	-2 < Qh ≤ -1	-1 < Qh ≤ 0	0 < Qh ≤ 1	1 < Qh ≤ 3	3 < Qh
	0.25	0.30	0.35	0.40	0.45	0.50	0.55
⊿Th = 1	0.35	0.40	0.45	0.50	0.55	0.60	0.65
⊿Th = 2	0.50	0.55	0.60	0.65	0.70	0.75	0.80
⊿Th = 3	0.65	0.70	0.75	0.80	0.85	0.90	0.95
∠ Th = 4	0.75	0.80	0.85	0.90	0.95	1.00	1.05
⊿ Th = 5	0.85	0.90	0.95	1.00	1.05	1.10	1.15
∠ Th = 6	0.85	0.90	0.95	1.00	1.05	1.10	1.15
∠ Th = 7	0.90	0.95	1.00	1.05	1.10	1.15	1.20
∠ Th = 8	0.95	1.00	1.05	1.10	1.15	1.20	1.20
⊿Th = 9	1.00	1.05	1.10	1.15	1.20	1.20	1.20
<u></u> Th ≥ 10	1.05	1.10	1.15	1.20	1.20	1.20	1.20

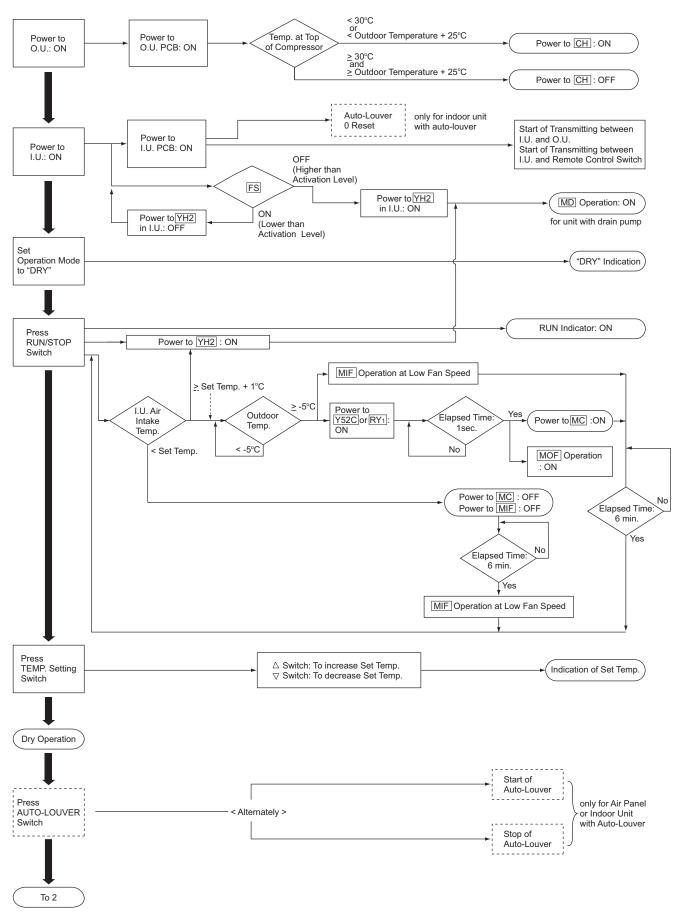

NOTES:

1. ∠Th (n): Setting Temp. - Indoor Inlet Air Temp.

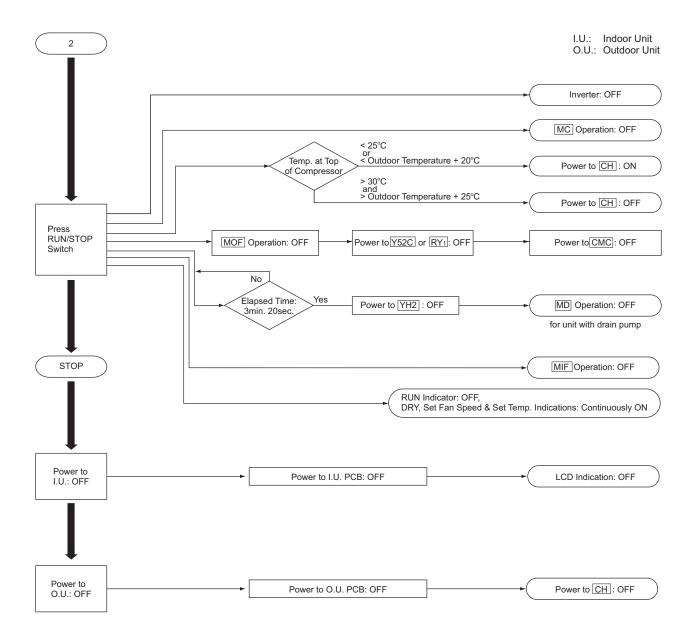
2. ∠Th (n-1): Last Time ∠Th (n)


3. Qh: ∠ Th (n) - ∠ Th (n-1)

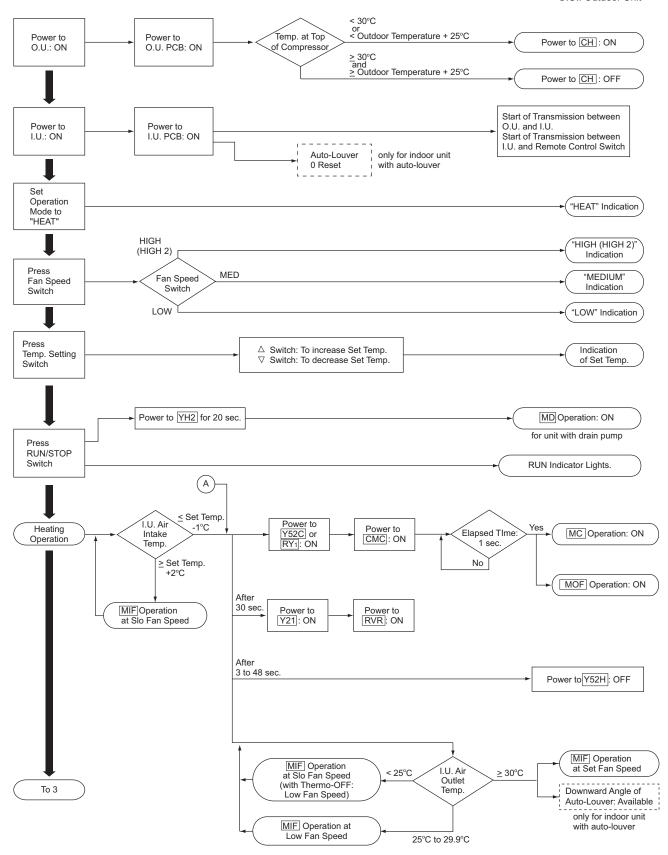
10.4 Standard Operation Sequence


1-54 TCO-13001

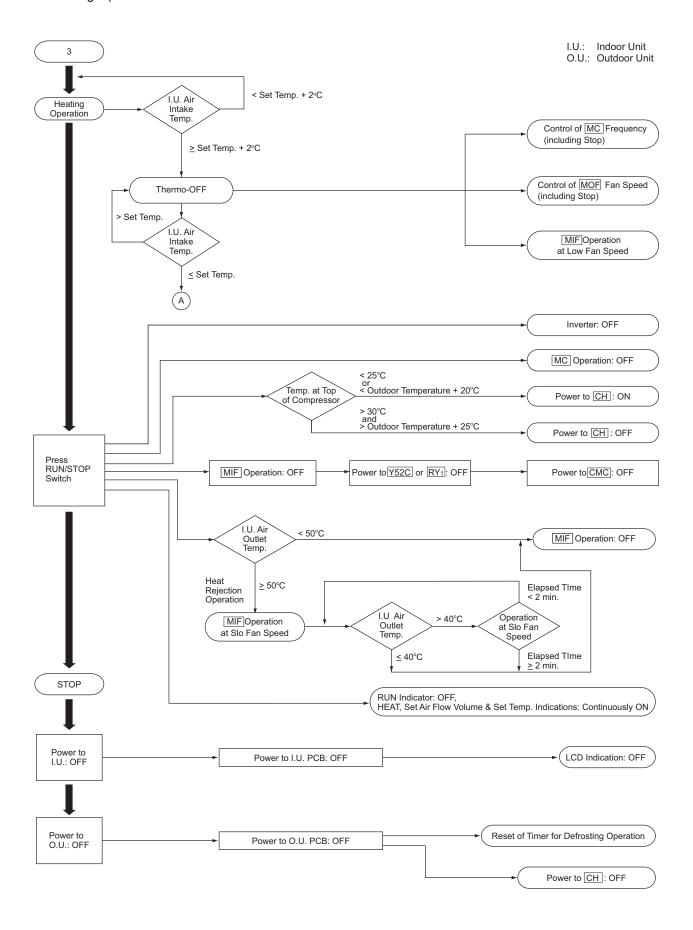
■ Cooling Operation


■ Dry Operation

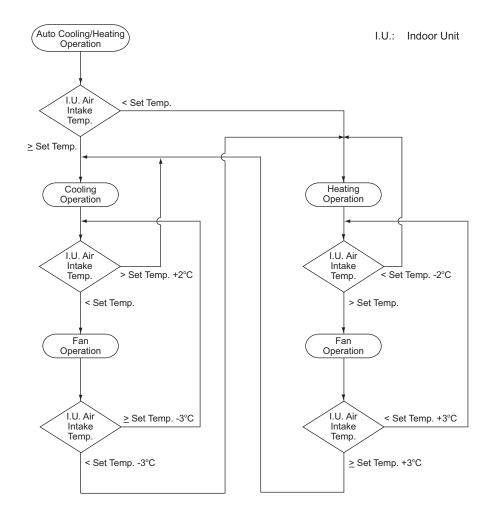
I.U.: Indoor Unit O.U.: Outdoor Unit


1-56 TCO-13001

■ Dry Operation

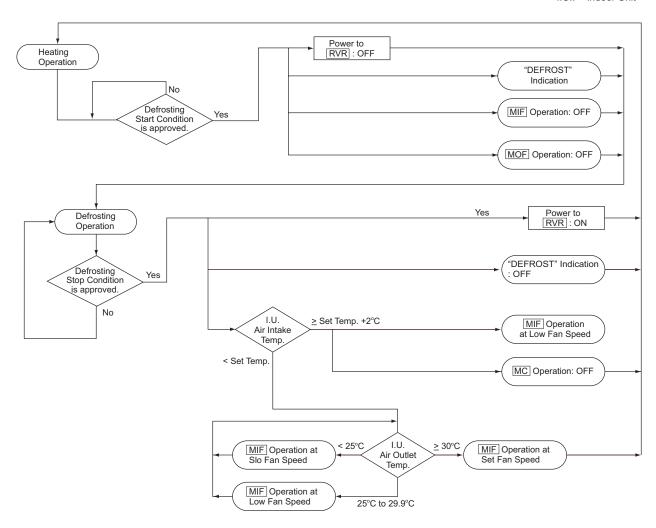

■ Heating Operation

I.U.: Indoor Unit O.U.: Outdoor Unit


1-58 TCO-13001

■ Heating Operation

■ Automatic Cooling and Heating Operation


It is applicable only for single.

1-60 TCO-13001

■ Defrosting Operation

I.U.: Indoor Unit

< Defrosting Operation >

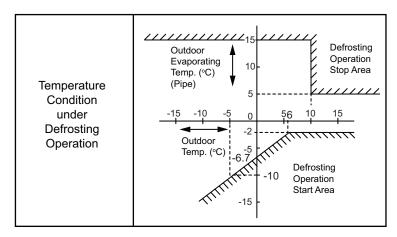
The following defrosting operations, "Standard Defrost", "Forced Defrost" and "Manual Defrost" are available.

(1) Standard Defrost

This operation starts according to the outdoor temperature, the outdoor evaporating temperature and the operating time.

(2) Forced Defrost

This operation starts when the indoor unit repeats Thermo-ON/OFF operation and therefore cannot start the "Standard Defrost."


(3) Manual Defrost

This operation starts when the push switch "PSW1" on the outdoor unit PCB is pressed for more than 3 seconds during maintenance, etc. (This function cannot be used when the pressure and the outdoor evaporating temperature is high or at the beginning of the operation.)

NOTE:

Do not repeat "Manual Defrost" frequently.

- < Condition for Starting Defrosting Operation >
- (1) Standard Defrost
 - (a) Temperature Condition

(b) Condition of Operating Time for Defrosting Operation Start
The defrosting operation starts when the temperature condition shown in "(a) Temperature
Condition" is met after the heating operation of 40 to 120 minutes. The heating operation time is
determined by estimating the amount of frost on the heat exchanger.

(2) Forced Defrost

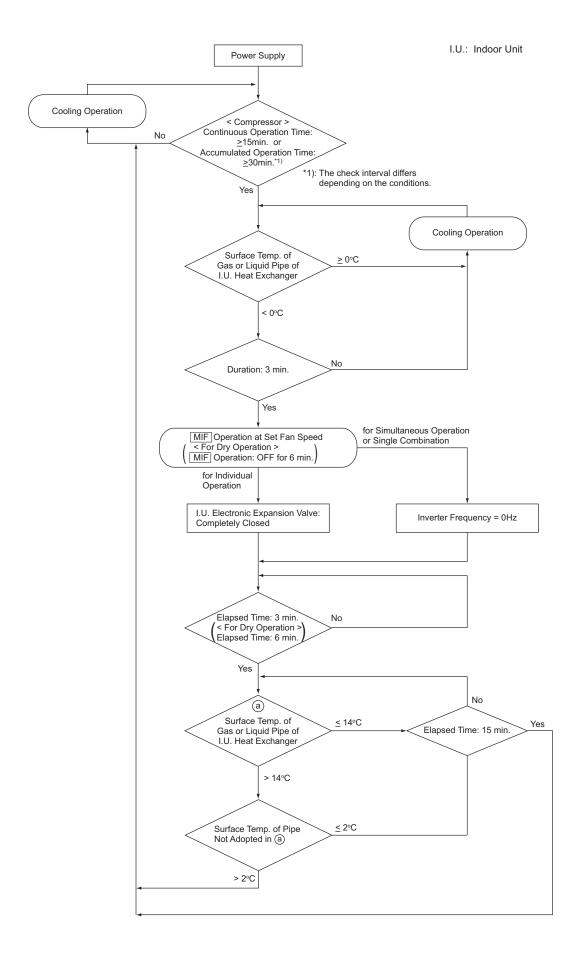
The "Forced Defrost" starts when all the following conditions are met.

- (a) The reversing valve is "ON" for more than 120 minutes.
- (b) The outdoor temperature is 10°C or lower.
- (c) The accumulated heating operation time is more than 60 minutes. (The accumulated time is reset when the operation is stopped or the defrosting operation is performed.)
- (d) The compressor is operated continuously for more than 1 and a half minutes.
- (e) The outdoor evaporating temperature is lower than 5°C right before the operation starts.
- (f) The pressure switch for control is "OFF".

< Condition for Completing Defrosting Operation >

The defrosting operation stops when any of the following conditions is met.

- (1) The outdoor evaporating temperature reaches 25°C within 2 minutes after the defrosting operation starts.
- (2) The outdoor evaporating temperature reaches 15°C (the outdoor temperature < 10°C) and high pressure reaches 1.5MPa after a lapse of 2 minutes or more from the defrosting operation start.
- (3) The outdoor evaporating temperature reaches 5°C (the outdoor temperature ≥ 10°C) after a lapse of 2 minutes or more from the defrosting operation start.
- (4) The temperature at the top of the compressor reaches 132°C.
- (5) The pressure switch for control is "ON".
- (6) The high pressure reaches 3.3MPa within 20 seconds after the defrosting operation starts.
- (7) The high pressure reaches 3.1MPa after a lapse of 2 minutes or more from the defrosting operation start.
- (8) More than 9 minutes have passed from the defrosting operation start.


NOTE:

The defrosting operation does not start immediately even if the above conditions are met, because these conditions may be met temporarily depending on the refrigerant cycle variability.

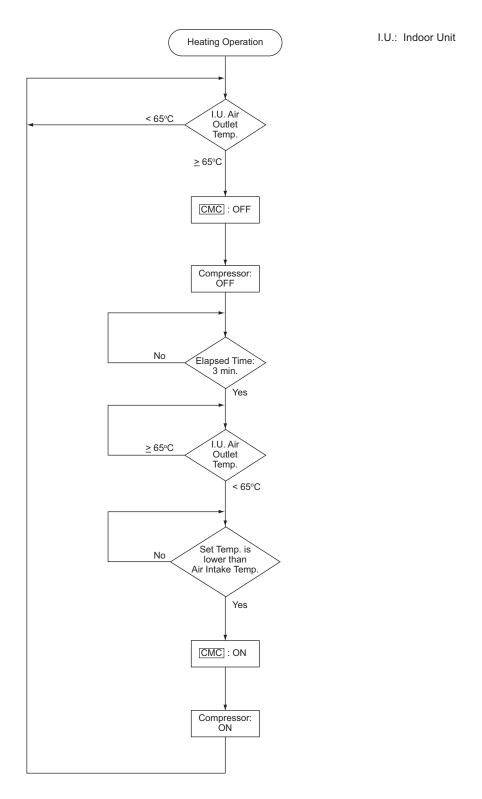
The defrosting operations start when these conditions are met continuously for a certain period of time.

1-62 TCO-13001

■ Freezing Protection Control during Cooling or Dry Operation

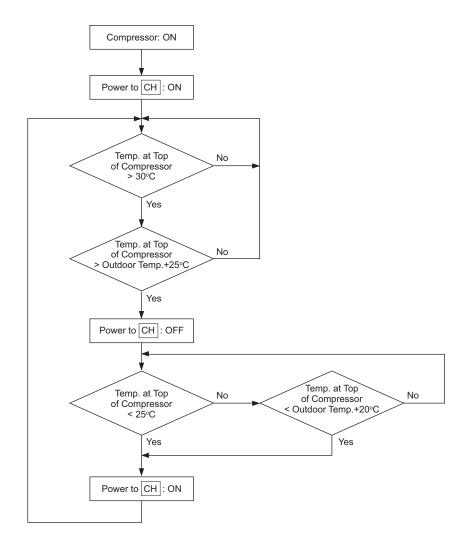
CONTROL SYSTEM

■ Prevention Control for High Pressure Increase during Cooling Operation

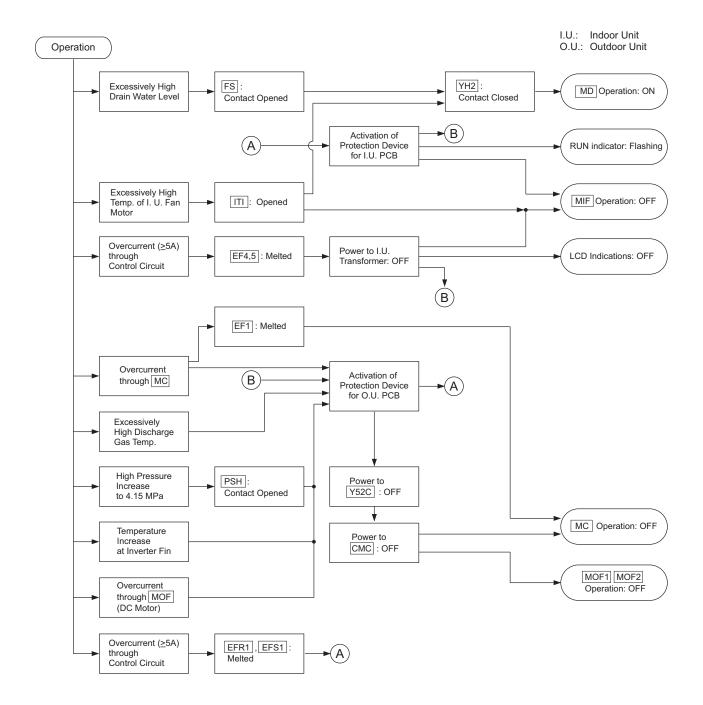

This function is utilized to prevent the abnormal condition (Alarm Code: 02) that the air flow volume is decreased by a seasonal wind against the air outlet of the outdoor unit. When the following conditions are met, the forced Thermo-OFF operation will be performed.

The cause of stoppage is "13" during Thermo-OFF.

- (1) Y52C is turned "ON" during cooling operation, or RY1 is turned "ON" (during the compressor operation).
- (2) Pressure Switch for Control is turned ON (ON: 3.6MPa / OFF: 2.85MPa)
- (3) Condensation temperature ≥ 62°C


1-64 TCO-13001

■ Prevention Control for Excessively High Discharge Gas Temperature


Thermo-ON/OFF Control for Indoor Unit

- Control for Crankcase Heater
- < During Compressor Shutdown / During Compressor Operation >

1-66 TCO-13001

■ Activation of Protection Instrument

10.5 Protection and Safety Control

Compressor Protection

The compressor is protected by the following devices and their combinations.

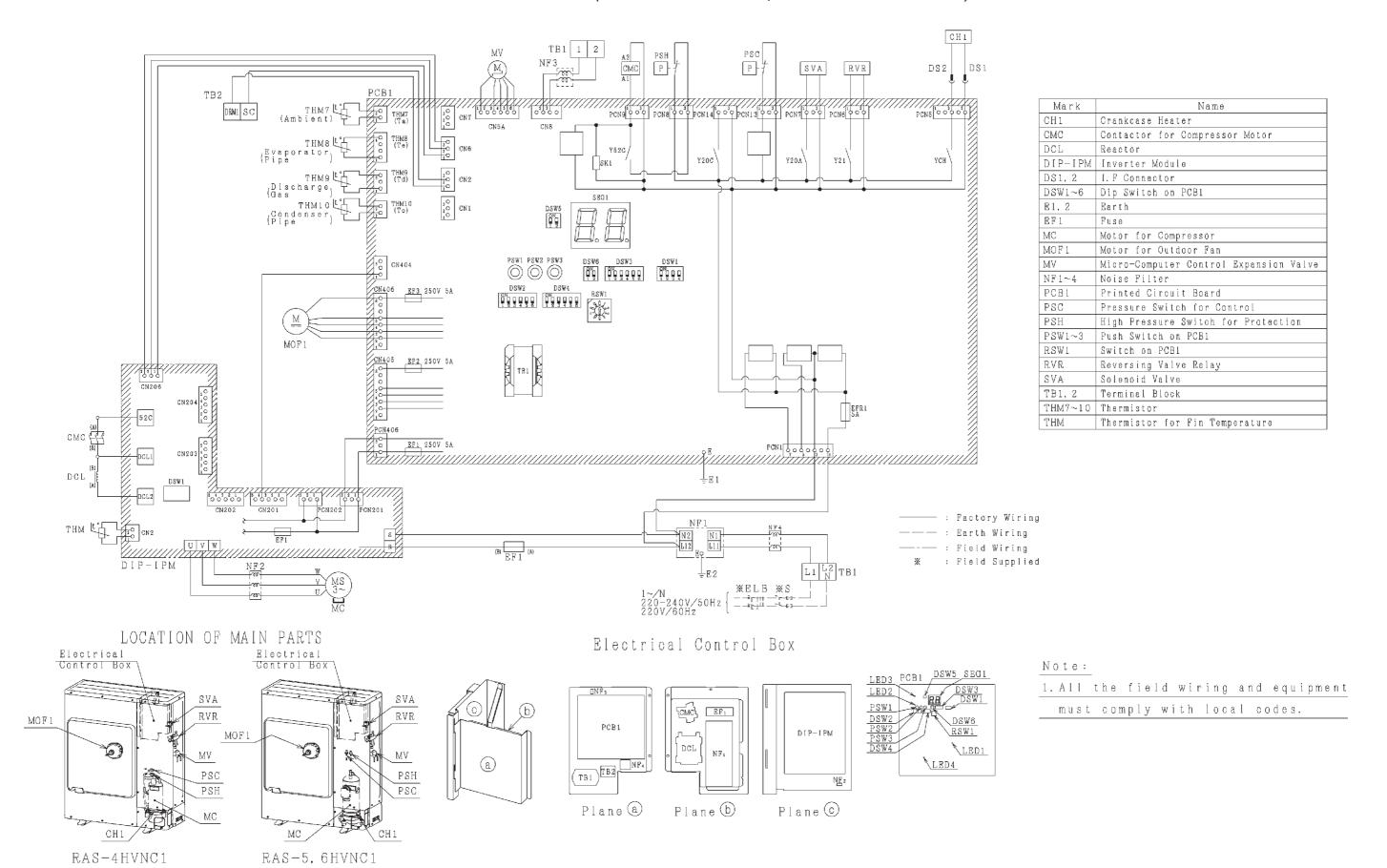
High Pressure Switch - This switch cuts out the operation of the compressor when the discharge pressure exceeds the setting.

Crankcase Heater - This band type heater protects against oil Carry-over during cold starting, as it is energized while the compressor is stopped.

Fan Motor Protection

Internal Protection Device in the fan motor, this device cuts out the operation of the fan motor when the fan motor current exceeds the setting.

Chip Ceramic


PTC Thermistor (POSISTOR \circledR) in the DC fan motor, this device control the fan motor revolution when the fan motor internal temperature exceeds the setting.

10.6 Safety and Control Device Setting

	Model		RAS-4HVNC1	RAS-5HVNC1	RAS-6HVNC1	
For Compressor			Automatic Reset, Non-adjustable			
Pressure Switch			(each one for each compressor)			
High	Cut-Out	MPa	4.15 ^{-0.05} -0.15 4.15 ^{-0.05}		4.15 ^{-0.05} -0.15	
	Cut-In	MPa	3.20 <u>+</u> 0.15	3.20 <u>+</u> 0.15	3.20 <u>+</u> 0.15	
Low	Cut-Out	MPa	0.30 <u>+</u> 0.05	0.30 <u>+</u> 0.05	0.30 <u>+</u> 0.05	
	Cut-In	MPa	0.20 <u>+</u> 0.03	0.20 <u>+</u> 0.03	0.20 <u>+</u> 0.03	
Fuse						
1 _φ , 220/240V, 50Hz						
1φ, 220	V, 60Hz	Α	40	40	40	
CCP Timer				Non-Adjustable		
Setting Time min.		min.	3	3	3	
For Condenser Fan Motor			Automatic Reset, Non-Adjustable			
Internal Thermostat			(each one for each motor)			
For Control Circuit						
Fuse Capacity on PCB A		А	5	5	5	

1-68 TCO-13001

ELECTRICAL WIRING DIAGRAM (FOR MODELS: RAS-4HVNC1, RAS-5HVNC1 AND RAS-6HVNC1)

CONTROL SYSTEM

1-70

11. Miscellaneous Notes

Special Notes

- Provide a service access door near the unit piping connection part on the false ceiling for the cassette type units.
- 2. Consider the air distribution from the unit to the space of the room, and select a suitable location so that uniform air temperature in the room can be obtained.
 - Cassette Type Avoid unit installation in a room where the ceiling height (distance between the floor to the false ceiling) exceeds three meters. If the indoor unit is installed in a room with a ceiling of higher than 3 meters, it is recommended that an air circulation fan be installed separately to obtain uniform air temperature in the room, especially during the heating operation.
- 3. Check to ensure that the ceiling slab is strong enough and that the false ceiling is flat and level.
- 4. Avoid obstacles which may restrict the air intake or the discharge flow.
- 5. Do not install the unit in a machinery shop or kitchen where vapor from oil or its mist can enter to the unit.
 - The oil will deposit on the heat exchanger, thereby reducing the unit performance, and may deform, in the worst case, break the plastic parts of the unit.
- Pay attention to the following points when the unit is installed in a hospital or other facilities where electromagnetic wave is radiated from medical equipment.
 - (A) Do not install the unit where the electromagnetic wave is directly radiated to the electrical box, remote control cable or remote control switch.
 - (B) Install the unit and component as far as practical (at least three meters) from the electromagnetic wave radiator.
 - (C) Prepare a steel box and install the remote control switch in it. Prepare a steel conduit pipe and wire the remote control cable in it. And then, connect earth wire with the box and the pipe.
 - (D) Install a noise filter when the power supply emits harmful noise.
- 7. Do not install the units in an acid or alkaline environment due to the corrosive action on the heat exchanger. In the case that outdoor units are installed near the sea, it is recommended that optional corrosion-resistant type outdoor unit be used.
- 8. Do not install the units in a flammable environment due to the danger of an explosion.
- Regarding cassette type indoor units, consider the direct and reflected sound level, when selecting the unit for spaces where extremely low sound is required.

- During heating operation, the outdoor heat exchanger produces condensate dew or melting water from frost.
 Install the outdoor unit where drainage of such water is convenient, or provide a drain passage.
- 11. Heating Performance: The heating capacity normally decreases when outdoor temperatures decrease. Therefore, provide an auxiliary heating unit if outdoor temperatures are very low
- 12. In the case that an outdoor temperature is low and humidity is high, the outdoor heat exchanger will covered with frost, resulting in lower heating capacity. In order to remove the frost, the unit is automatically changed to the defrosting mode. During this defrosting operation, the unit is stopped for approximately 3 to 10 minutes.
- 13. As this unit is of heat pump type by circulating hot air in the whole room space, it takes time to heat up the room temperature.
- 14. The operating sound data is based on an anechoic chamber. Therefore, the actual operating sound will be higher due to reflected sound from the floor and wall.
- 15. In the case that the unit is operated for a long time higher than the indoor temperature of 27°C DB or the humidity of 80%, dewing may occur on the cabinets resulting in dew drops. If dewing, it is required to add thermal insulator on the cabinets.
- 16. Provide snow-protection hoods to prevent the outdoor heat exchanger from snow clogging. If the unit is operated in an area where it snows heavily, provide a base under the outdoor unit which should be 50cm higher than the presumable maximum snow height.
- 17. It is recommended that periodical service and maintenance be performed by authorized service engineers before air conditioning seasons, in order to avoid performance decrease due to dust or dirt.
- 18. This heat pump air conditioner has been designed for normal air conditioning for men. Do not apply to other purposes such as for food, animals, plants, high precision machines or work of art. Also do not apply to vehicles or vessels. It will results in water leakage or electrical leakage.
- 19. It is recommended that the system be installed by authorized engineers. If not, it may cause water leakage, electric shock or fire.
- 20. In a place where fibers or dusts are floating, the air filter or heat exchangers or the drain pipe may be clogged, resulting in water leakage from the drain pan.

12. Standard Specifications

UNIT - The unit shall be a multi-split system inverterdriven heat pump air conditioner for application with R410A refrigerants, and shall be composed of 4-way cassette type indoor units, or in-the-ceiling type indoor units and an outdoor unit, with a distributed refrigeration cycle, electrical components and enclosing cabinets. Optional accessories shall also be provided upon customer request. The indoor unit shall be constructed for installation, and the outdoor unit shall be completely weather-proofed for outdoor installation. Both indoor unit and the outdoor unit shall be properly assembled, internally piped and wired, throughly tested, and charged with R410A refrigerant at the factory and shall comply with Japanese Industrial Standards and other Japanese standardization statues.

INDOOR UNIT

CABINET - The cabinet shall be constructed of galvanized steel sheet or finished steel sheet, baked with synthetic resin-paint, with a plastic air panel assembly for cassette type unit, and be constructed of galvanized steel sheet for the in-the-ceiling duct type unit.

REFRIGERATION CYCLE - The refrigeration cycle shall be equipped with a heat exchanger, an electronic expansion valve, solenoid valves and flare connections.

INDOOR FAN AND FAN MOTOR - The indoor fan
shall be the multi-blade centrifugal type, statically
and dynamically balanced, and directly driven by
aW motor for model and aW motor
for model The fan motor bearing shall be
permanently lubricated. The fan shall deliver
m³/min. air flow for model and
m ³ /min. for model at the nominal air flow.
Three operating positions Hi, Me and Lo can be
selected according to the required conditions.

INDOOR HEAT EXCHANGER - The heat exchanger shall be the multi-pass, cross-finned tube type, equipped with highly-efficient aluminum fins, mechanically bonded to seamless, oxygen-free copper tubes. The fins shall be spaced at no more than 12 fins per 25.4mm. The face area shall not be less than ____m² for model ____ and ___m² for model ____ and dehydrated and tested for leakage at the factory.

OUTDOOR UNIT

CABINET - The cabinet shall be constructed of galvanized steel sheet, baked with synthetic resin paint. The service panel shall be easily removable for service access to the electrical components and the compressor section.

REFRIGERATION CYCLE - Each refrigeration cycle shall be equipped with a scroll compressor, a solenoid valve, a heat exchanger, a 4-Way valve and flare connection parts.

COMPRESSOR PROTECTION - The compressor shall be protected against breakdown by a quick response overcurrent relay, a high pressure switch, a wrap-around type crankcase heater and a discharge gas thermistor.

OUTDOOR FAN AND FAN MOTOR - The outdoor fan(s) shall be the plastic propeller type, dynamically balanced, and the fan shall be directly driven by a _____W motor for horizontal-flow air discharge. The fan motor shall be permanently lubricated and be protected from ingress of water.

OUTDOOR HEAT EXCHANGER - The heat exchanger shall be the multi-pass, cross-finned tube type, equipped with highly-efficient aluminum fins, mechanically bonded to oxygen-free copper tubes. The coil shall be cleaned, dehydrated and tested for leakage at the factory.

CONTROL - All electrical control devices, shall be enclosed in the indoor and outdoor units.

In addition to the compressor protection devices, the indoor fan motor shall be equipped with an internal thermostat. The outdoor fan motor shall be protected by an internal thermostat. The indoor fan motor shall be directly supplied with the power source from the control circuit. The functions of these control devices shall compose an electrical sequence of manual starting and stopping, automatic continuous operation whenever the room thermostat requires, and the protection devices allow the operation.

CABINET - The cabinet shall be constructed of galvanized steel sheet.

REFRIGERATION CYCLE - The refrigeration cycle shall be equipped with solenoid valves and flare connections to changeover the cycle in mediating between outdoor unit and indoor unit.

1-72 TCO-13001

13. Caution on Refrigerant Leakage

13.1 Maximum Permissible Concentration of HFC (or HCFC) Gas

The refrigerant R410A, charged in the DC Inverter HVRNM2 system, is an incombustible and non-toxic gas. However, if leakage occurs and gas fills a room, it may cause suffocation.

The maximum permissible concentration of R410A in air is *0.3 kg/m³, according to the refrigeration and air conditioning facility standard (KHK S 0010) by the KHK (High Pressure Gas Protection Association) Japan. Therefore, some effective measure must be taken to lower the R410A concentration in air below *0.3 kg/m³, in case of leakage.

13.2 Calculation of Refrigerant Concentration

- (1) Calculate the total quantity of refrigerant R (kg) charged in the system connecting all the indoor units of rooms to be air-conditioned.
- (2) Calculate the room Volume V (m³) of each room.
- (3) Calculate the refrigerant concentration C (kg/m³) of the room according to the following equation.

$$\frac{\text{R: Total Quantity of Charged Refrigerant (kg)}}{\text{V: Room Volume (m}^3)} = \text{C: Refrigerant Connection}$$
≤ 0.3 (kg/m 3)

13.3 Countermeasure for Refrigerant Leakage According to KHK Standard

The facility shall be arranged as follows referring to the KHK standards, so that the refrigerant concentration will be below *0.3 kg/m³.

- (1) Provide a shutterless opening which will allow fresh air to circulate into the room.
- (2) Provide a doorless opening of 0.15% or more size to the floor area.
- (3) Provide a ventilator, linked with a gas leak detector, of 0.4 m³/min. or more ventilating capacity per Japanese Refrigeration Ton (= compressor displacement m³/h / 8.5) of the air conditioning system utilizing refrigerant R410A.

RAS-4HVNC1	1.91	ton
RAS-5HVNC1	2.30	ton
RAS-6HVNC1	2.30	ton

(4) Pay a special attention to the place, such as a basement, etc., where refrigerant can stay, since refrigerant is heavier than air.

If local codes or regulations are specified, follow them.

<Example>

British Standard BS4434 1989

R410A Commercial Office Building Class D Occupancy

 $MR = C \times V$

MR: Maximum Charge or Leakage of Refrigerant (kg)

C: Maximum Allowable Concentration = 0.17 (kg/m³)

V: Volume of Space (m³)

^{*:} Use this value for a reference only, since this value is not fixed yet. Follow upon local regulations.

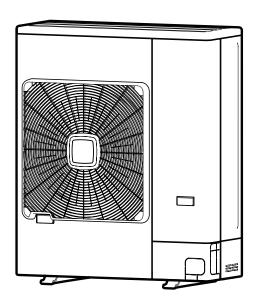
Installation and Maintenance

- CONTENTS -

	Outdoor Units (P5415267)	2-3
•	Multi-Kit: TW-22, 52AN (P5414806-rev.2)	2-61
•	Multi-Kit: TG-53AN (P5414807-rev.1)	2-65
•	Multi-Kit: MW-102AN1 (P5415123)	2-69

2-2 TCO-13001

HITACHI Inspire the Next


Installation & Maintenance Manual

INVERTER-DRIVEN
SPLIT SYSTEM
HEAT PUMP
AIR CONDITIONERS
- DC INVERTER UTOPIA -

Models:

Outdoor Units;

RAS-4HVNC1 RAS-5HVNC1 RAS-6HVNC1

IMPORTANT:

READ AND UNDERSTAND THIS MANUAL BEFORE USING THIS HEAT-PUMP AIR CONDITIONERS. KEEP THIS MANUAL FOR FUTURE REFERENCE.

P5415267

IMPORTANT NOTICE

- HITACHI pursues a policy of continuing improvement in design and performance of products.
 The right is therefore reserved to vary specifications without notice.
- HITACHI cannot anticipate every possible circumstance that might involve a potential hazard.
- This heat pump air conditioner is designed for standard air conditioning only. Do not use this heat pump air conditioner for other purposes such as drying clothes, refrigerating foods or for any other cooling or heating process.
- Do not install the unit in the following places. It may cause a fire, deformation, corrosion or failure.
 - * Places where a fire, oil, steam or powder may enter directly to the unit such as right above a kitchen, etc.
 - * Places where oil (including machinery oil) may be present in quantities.
 - * Places where a lot of sulfide gas drifts such as a hot spring.
 - * Places where flammable gas may be generated or flow.
 - * Places where strong salty wind blows, such as coast regions.
 - * Places with an atmosphere of acidity or alkalinity.
 - * Places where gas from festering trash, etc. may be generated.
- Do not install the unit in the place where silicon gas drifts. If the silicon gas attaches to the surface of the heat exchanger, the fin surface repels water. As a result, drain water splashes outside of the drain pan and splashed water runs inside of the electrical box. In the end, water leakage or electrical devices failure may occur.
- Pay attention to the following points when installing the unit in a hospital or other facilities where electromagnetic waves are generated from medical equipment.
 - * Do not install the unit in the place where electromagnetic waves are directly radiated to the electrical box, remote control cable or remote control switch.
 - * Install the unit at least 3 meters away from devices generating electromagnetic waves, such as a radio.
- Do not install the unit in the place where animals and plants catch the direct outlet air. It could adversely
 affect animals and plants.
- The installer and system specialist shall secure safety against the refrigerant leakage according to local regulations or standards. The following standards may be applicable, if the local regulations are not available;
 - International Organization for Standardization, ISO5149 or European Standard, EN378 or Japan Standard, KHKS0010.
- No part of this manual may be reproduced without written permission.
- It is assumed that this heat pump air conditioner will be operated and serviced by English speaking people.
 If this is not the case, the customer should be provided with safety, caution and operating signs in the native language.
- If you have any questions, contact your distributor or dealer of HITACHI.
- This manual gives a common description and information for this heat pump air conditioner which you
 operate as well for other models.
- This heat pump air conditioner has been designed for the following temperatures. Operate the heat pump air conditioner within this range.

Iemperature		(°C)
	Maximum	Minimum

		Maximum	Minimum	
Cooling	Indoor	32 DB/23 WB	21 DB/15 WB	
Operation	Outdoor	46 DB	-5 DB	
Heating	Indoor	27 DB	15 DB	
Operation	Outdoor	15 WB	-20 WB	

DB: Dry Bulb, WB: Wet Bulb

This manual should be considered as a permanent part of the air conditioning equipment and should remain with the air conditioning equipment.

P5415267

2-4 TCO-13001

CHECKING PRODUCT RECEIVED

- Upon receiving this product, inspect it for any shipping damage.
 Claims for damage, either apparent or concealed, should be filed immediately with the shipping company.
- Check the model number, electrical characteristics (power supply, voltage and frequency) and accessories to determine if they are correct.

The standard utilization of the unit shall be explained in these instructions.

Therefore, the utilization of the unit other than those indicated in these instructions is not recommended. Please contact your local agent, as the occasion arises.

HITACHI's liability shall not cover defects arising from the alteration performed by a customer without HITACHI's consent in a written form.

ii P5415267

TABLE OF CONTENTS

1.	Safe	ety Summary	1
2.	Stru	cture	5
	2.1	Name of Parts	5
	2.2	Necessary Tools and Instrument List for Installation	7
3	Refo	ore Installation	o
٥.	3.1	Selection of Unit Model	
	3.2	Indoor Unit Selection for Installation of Multiple Indoor Units	
	3.3	Standard Combination of Outdoor Unit and Indoor Unit	
	3.4	Enhanced Combination of Outdoor Unit and Indoor Unit	
4.	Tran	sportation and Handling	12
		door Unit Installation	
Ο.	5.1	Factory-Supplied Accessories	
	5.2	Initial Check	
	5.3	Service Space	
	5.4	Installation Work	18
6	Refr	igerant Piping Work	20
٥.	6.1	Piping Materials	
	6.2	Flaring and Joint	
	6.3	Piping Connection Work	
	6.4	Pipe Selection	23
	6.5	Piping Connection	26
7.	Elec	etrical Wiring	29
	7.1	•	
	7.2	Wiring Connection	30
8.	Sett	ing of Dip Switch	38
9.	Addi	itional Refrigerant Charge	41
	9.1	Air Tight Test	
	9.2	Vacuum Pump and Refrigerant Charge	41
	9.3	Refrigerant Charge Quantity	43
	9.4	Refrigerant Recovery	45
10.	Test	Run	46
	10.1	Before Test Run	46
	10.2	Test Run	48
	10.3	Optional Function Setting	50
11	Cofe	the and Control Davisa Catting	5 2

1. Safety Summary

- < Signal Words >
- Signal words are used to identify levels of hazard seriousness.
 Definitions for identifying hazard levels are provided below with their respective signal words.

DANGER : DANGER indicates a hazardous situation which, if not avoided, will result in death or serious injury.

: WARNING indicates a hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION: CAUTION, used with the safety alert symbol, indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

NOTICE : NOTICE is used to address practices not related to personal injury.

NOTE : NOTE is useful information for operation and/or maintenance.

P5415267 1

A DANGER

- Do not perform installation work, refrigerant piping work, drain pumping, drain piping and electrical wiring connecting work without referring to our installation manual. If the instructions are not followed, it may result in a water leakage, an electric shock, a fire and an injury.
- Use the specified non-flammable refrigerant (R410A) to the outdoor unit in the refrigerant cycle. Do not charge the unit with materials other than R410A, such as hydrocarbon refrigerants (propane, etc.), oxygen, flammable gases (acetylene, etc.) or poisonous gases when installing, maintaining and moving the unit. Contamination of these are extremely dangerous and may cause an explosion, a fire, and an injury.
- Do not pour water into the product. This product is equipped with electrical parts. If water is poured, therefore, it will cause a serious electric shock.
- Make sure to turn OFF the main power supply before opening the service cover of the outdoor unit.
 Otherwise, it may cause an electric shock.
- Do not touch or adjust safety devices inside the indoor unit and outdoor unit. If these devices are touched or readjusted, it may cause a serious accident.
- Prior to installation work, make sure to conduct refrigerant leakage test. The refrigerant (Fluorocarbon) for this unit is non-flammable, non-toxic and odorless. However, if it should leak and contact with fire, toxic gas will be generated. Also because the fluorocarbon is heavier than air, it settles close to the floor, which could cause suffocation.
- Refrigerant leakage may lead to insufficient air and cause difficulty with breathing. Turn OFF the main switch, extinguish all naked flames and contact your service contractor, if refrigerant leakage should occur.
- The installer and system specialist shall secure safety against refrigerant leakage according to the local regulations or standards.
- For installation in a small room, make sure to take strong measures to prevent the refrigerant from exceeding the maximum permissible concentration in case a refrigerant gas leakage should occur. Otherwise, leaked refrigerant gas will cause suffocation in the event of a leakage. Consult with your distributor for countermeasures (ventilation system, etc).
- Use an ELB (Earth Leakage Breaker).
 If it is not used, an electric shock or a fire can be caused in the event of a fault.
- Do not install the outdoor unit where there is high level of oil mist, flammable gases, salty air or harmful gases such as sulfur.
- When installing the unit, make sure to connect the refrigerant piping before the compressor starts operating. When maintaining, relocating and disposing the unit, remove the refrigerant piping after the compressor stops. If the refrigerant piping are not connected and the compressor are operated with the stop valve opened, the refrigerant cycle will be subjected to extremely high pressure, which may cause an explosion, a fire and an injury.
- Do not modify protection devices such as a pressure switch. Modification to protection devices (short circuit, etc.) might cause a fire and an explosion.
- Be sure to use Nitrogen Gas for air tight test. If other gases such as oxygen gas, acetylene gas or fluorocarbon gas are accidentally used, it may cause an explosion or gas intoxication.
- When cleaning the existing refrigerant piping, comply with the following points.
 - a. Use non-flammable and non-toxic cleaning agent for cleaning the pipes. Flammable cleaning agent may cause an explosion or a fire.
 - b. Open the window for ventilation during installation. If not, it might cause suffocation.
 - c. Make sure that cleaning agent does not contact fire nor reach a high temperature, in order to prevent toxic gas from being generated.

2 P5415267

2-8 TCO-13001

AWARNING

- Do not use any sprays such as an insecticide, lacquer or hair spray, or other flammable gases within approximately one (1) meter from the system.
- If the circuit breaker or fuse is often activated, stop the system and contact your service contractor.
- Check that the ground wire is securely connected. If the unit is not correctly grounded, it will lead to an electric shock. Do not connect the ground wiring to a gas piping, water piping, lighting conductor or ground wiring for telephone.
- Connect a fuse of specified capacity.
- Before any brazing work, check to ensure that there is no flammable material around. Otherwise, it might lead to a fire.
- Select a sufficiently strong installation location. If not, the unit may fall down and it may lead to injuries.
- When handling the refrigerant, be sure to wear leather gloves to prevent cold injuries.
- Do not install the unit where oil, vapor, organic solvent and corrosive gas (ammonia, sulfur compound and acid, etc.) may be present in quantities. Operation under such conditions may lead to refrigerant leakage due to corrosion, an electric shock, performance degradation and a failure.
- Electrical wiring work must be performed by authorized installers. Incorrect installation by a non-authorized installer may cause an electric shock or a fire.
- Perform electrical work according to this Installation Manual and all the relevant regulations and standards.
 Failing to follow these instructions can cause capacity shortage and performance degradation, resulting in an electric shock and a fire.
- Use specified cables between the outdoor unit and the indoor units. Selecting incorrect cables may cause an electric shock or a fire.
- Ensure that the wiring terminals are tightened securely with the specified torques. Loose terminals may cause heat generation at the terminal connection part, a fire or an electric shock.
- Make sure to tie the wires together with cord clamps after connecting the wiring to the terminal block and
 pass the wires through the wiring hole. If not, the wires will be pinched, causing a fire.
- Make sure to turn OFF the power supply before handling the service connector.
- Fix the cables securely. External forces from the cables applied on the terminals could lead to heat generation and a fire.
- When controlling the switch on PCB, do not touch other electrical parts. Otherwise, it may cause an
 electric shock.
- Protect the wires, electrical parts, etc. from rats or other small animals. If not, rats may gnaw at unprotected parts, which may lead to a fire.
- Take care not to pinch electrical wirings when attaching the service cover. It might cause an electric shock or a fire.
- Turn OFF the main power supply of all the units before electrical wiring work or a periodical check of
 electrical parts and check that there is no residual voltage, to avoid an electric shock being caused by
 residual voltage.

P5415267 3

ACAUTION

- Do not step on the product nor put any material on it.
- Do not put any foreign material on the unit or inside the unit.
- Provide a strong foundation so that;
 - a. the outdoor unit will not incline.
 - b. abnormal sound will not occur.
 - c. the outdoor unit will not fall down due to a strong wind or an earthquake.
- Tighten the flare nuts according to the specified torque. If an excessive force is applied, the flare nuts may crack due to aging degradation, causing refrigerant leakage.

NOTICE

- Do not install the indoor unit, outdoor unit, remote control switch and cable within approximately 3 meters from strong electromagnetic wave radiators such as medical equipment.
- For operation after a long-term shutdown, supply electrical power to the system to energize the crankcase heater for 12 hours before startup.
- Make sure that the outdoor unit is not covered with snow or ice, before operation.
- The packaged air conditioner may not be operated normally under the following cases.
 - * In case that electrical power for the packaged air conditioner is supplied from the same power transformer as the device with high electricity consumption*.
 - * In case that the power source wires for the device* and for the packaged air conditioner are located close to each other.

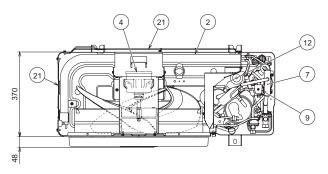
Device*: (Ex) Lift, container crane, rectifier for electric railway, inverter power device, arc furnace, electric furnace, large-sized induction motor and large-sized switch.

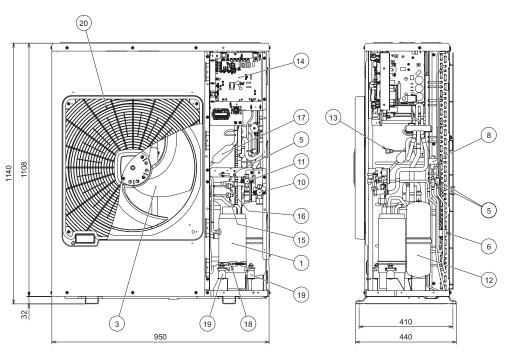
Regarding the cases mentioned above, surge voltage may be inducted in the power supply wiring for the packaged air conditioner due to a rapid change in power consumption of the device and an activation of switch.

Therefore, check the field regulations and standards before performing electrical work in order to protect the power supply for the packaged air conditioner.

NOTE

- It is recommended that the room be ventilated every 3 to 4 hours.
- The heating capacity of the heat pump unit decreases according to the outdoor air temperature. Therefore, it is recommended that auxiliary heating equipment be used in the field when installing the unit in a low temperature region.

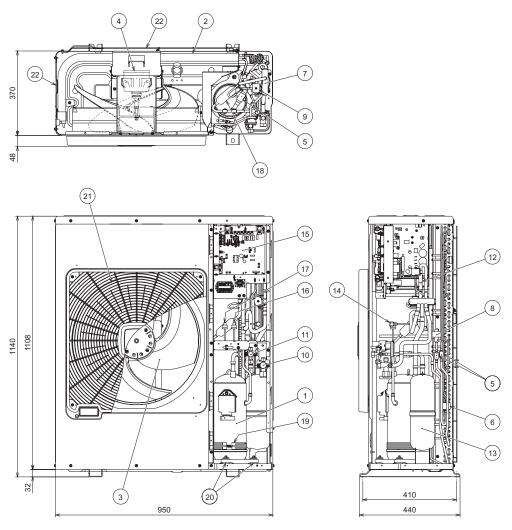

4 P5415267


2-10 TCO-13001

2. Structure

2.1 Name of Parts

< RAS-4HVNC1 >



No.	Part Name	No.	Part Name
1	Compressor	12	Accumulator
2	Heat Exchanger	13	Check Joint
3	Propeller Fan	14	Electrical Box
4	Fan Motor	15	High Pressure Switch for Protection
5	Strainer	16	Pressure Switch for Control
6	Distributor	17	Silencer
7	Reversing Valve	18	Crankcase Heater
8	Micro-Computer Control Expansion Valve	19	Vibration Absorbing Rubber (4pcs.)
9	Solenoid Valve	20	Air Outlet
10	Stop Valve for Gas Line	21	Air Inlet
11	Stop Valve for Liquid Line		

P5415267 5

< RAS-5HVNC1 and RAS-6HVNC1 >

No.	Part Name	No.	Part Name	
1	Compressor	12	Check Valve	
2	Heat Exchanger	13	Accumulator	
3	Propeller Fan	14	Check Joint	
4	Fan Motor	15	Electrical Box	
5	Strainer	16	High Pressure Switch for Protection	
6	Distributor	17	Pressure Switch for Control	
7	Reversing Valve	18	Silencer	
8	Micro-Computer Control Expansion Valve	19	Crankcase Heater	
9	Solenoid Valve	20	Vibration Absorbing Rubber (4pcs.)	
10	Stop Valve for Gas Line	21	Air Outlet	
11	Stop Valve for Liquid Line	22	Air Inlet	

6 P5415267

2-12 TCO-13001

2.2 Necessary Tools and Instrument List for Installation

No.	Tool	No.	Tool	No.	Tool
1	Handsaw	8	Plier	16	Cutter for Wires
2	Phillips Screwdriver	9	Pipe Cutter	17	Gas Leak Detector
3	Vacuum Pump	10	Brazing Kit	18	Leveller
4	Refrigerant Gas Hose	11	Hexagon Wrench	19	Clamper for Solderless Terminals
5	Megohmmeter	12	Spanner	20	Hoist (for Indoor Unit)
6	Copper Pipe Bender	13	Weigher	21	Ammeter
7	Manual Water Pump	14	Charging Cylinder	22	Voltage Meter
'	(for Indoor Unit)	15	Manifold Gauge	23	Wrench

When handling the new refrigerant R410A, use tools and measuring instruments exclusively for it.

NOTICE

- The refrigerant used for this product is HFC refrigerant R410A, which does not damage the ozone layer.
- The design pressure for this product is 4.15MPa. The pressure of the refrigerant R410A is 1.4 times higher than that of the refrigerant R22. Therefore, the refrigerant piping for the refrigerant R410A shall be thicker than that for the refrigerant R22. Make sure to use the specified refrigerant piping. If not, the refrigerant piping may be damaged due to an excessive refrigerant pressure. Take care when using copper refrigerant piping because thickness of copper refrigerant piping differs depending on its material.
- Due to the change of the refrigerant oil, the refrigerant cycle is more subject to foreign matters such as moisture, oxide film, and fat. Be careful that moisture, dust or different refrigerant does not enter the refrigerant cycle during installation work. Otherwise such parts as an expansion valve might bite into foreign matters and so operation will be unavailable.
- To prevent the refrigerant or refrigerant oil from entering the cycle, use the specified refrigerant piping and joints exclusively for the refrigerant R410A.

P5415267 7

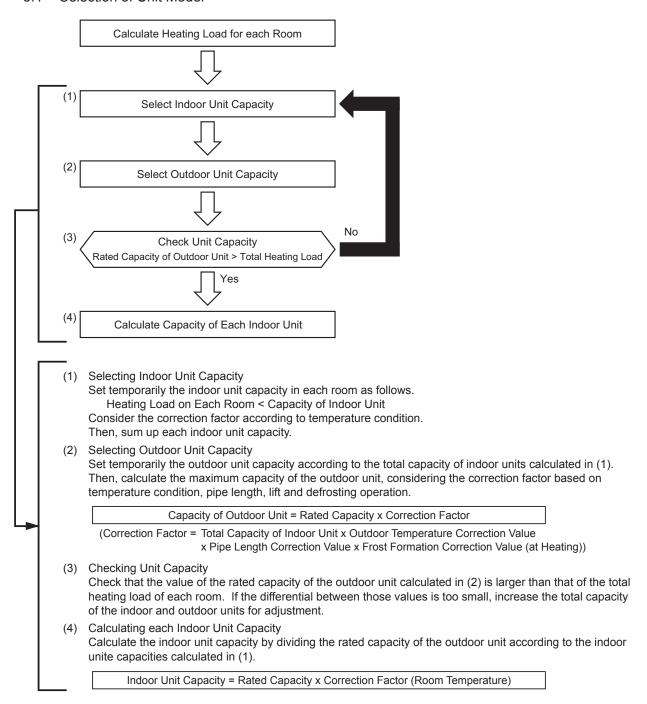
To avoid accidental mixing of different refrigerant or different refrigerant oil, the size of the charging connections has been changed. Therefore, prepare the following tools before installation work.

- ♦: Interchangeable with Tool for Current R22
- •: Exclusively for Refrigerant R410A (Not Interchangeable with Tool for R22)

X: Prohibited

♦ : E	Exclusively for	Refrigerant R407C	(Not Interchangeable	with Tool for R22)
--------------	-----------------	-------------------	----------------------	--------------------

Measuring Instrument and Tool		Interchangeability with R22		Reason for Non-interchangeability and Attention (★: Strictly Required)	Use
	Pipe Cutter	R410A	R407C	-	Pipe Cutting, Burring
	Chamfering Reamer			* B	Electric Co. Direc
	Extrusion Adjustment Gauge	•	-	* Because the pressure of R410A is higher than R22, flared openings shall be bigger. * If using flaring tools for R22, adjust the dimension of extruded part by 1mm with an extrusion adjustment gauge. * Flaring tools for R410A can also be used for R407C without adjustment (an extrusion adjustment gauge is not required).	Flaring for Pipe Dimensional Adjustment for Extruded Portion of Pipe after Flaring
	Pipe Bender	\diamond	\diamond	-	Pipe Bending
Refrigerant	Expanding Tool	\Diamond	\diamond	-	Pipe Expanding
Pipe	Torque Wrench	•	♦	* φ12.7, φ15.88: The spanner for R410A is 2mm longer than that for R22.	Connection of Flare Nut
	Torque Wichor	♦	<	* \(\phi 6.35, \phi 9.52, \phi 19.05: \) The spanners for R410A and R407C are interchangeable with that for R22.	
	Brazing Tool	\diamond	\diamond	* Perform brazing work correctly.	Brazing for Tubes
	Nitrogen Gas	<	<	* Strengthen control of nitrogen gas to prevent contaminants. (at nitrogen gas blow during brazing)	Prevention of Oxidation during Brazing Work, Air Tight Test
	Lubrication Oil (for Flared Surface)	•	+	* Ethereal Oil: FVC68D (Idemitsu Kosan Co., Ltd.)	Oil Coating for Flared Surface
	Refrigerant Cylinder	•	+	* Identification Label R410A: Pale Pink / R407C: Blown * Prepare a charging connections for each refrigerant cylinder. ★ Make sure to charge liquid refrigerant for zeotoropic refrigerant mixture.	Refrigerant Charge
	Vacuum Pump	♦	♦	★ The vacuum pump for R22 can be used for R410A and R407C, but only with a vacuum pump adapter	Vacuum Pumping
	Adapter for Vacuum Pump	•	*	to prevent a backflow of oil when vacuum pumping stops.	
Vacuum Drying • Refrigerant Charge	Manifold Valve	•	+	Because the pressure of R410A and R407C is higher than R22, the manifold valve and charging hose for R410A and R407C are not interchangeable with those for R22. Connection diameter for screws differ depending on the refrigerant.	Vacuum Pump, Vacuum Holding, Refrigerant Charge Pressure Check
Charge	Charging Hose	•	+	R410A: UNF1/2 R407C: UNF7/16 *Do not use a manifold valve and charging hose for R22. Otherwise, mineral oil will flow into the refrigerant cycle and cause sludges, resulting in clogging or compressor failure.	
	Charging Cylinder	×	×	-	Refrigerant Charge
	Weight Scale	♦	<	-	Measuring Instrument for Refrigerant Charge
	Refrigerant Gas Leakage Detector	•	*	* The gas leakage detectors for R410A and R407C are not interchangeable with that for R22 due to differences in detecting method.	Gas Leakage Check


^{*:} Interchangeabe with Tool for R407C.

8 P5415267

2-14 TCO-13001

3. Before Installation

3.1 Selection of Unit Model

3.2 Indoor Unit Selection for Installation of Multiple Indoor Units

(1) The indoor unit capacity in heating mode is roughly calculated as follows.

Indoor Unit Capacity (Heat) = * Temperature Difference x Air Flow Volume

*(Indoor Unit Outlet Air Temperature - Indoor Unit Inlet Air Temperature)

In simultaneous operation of all multiple indoor units, the total air flow volume increases and so the temperature difference may be smaller. Installing the units where the outlet air directly blows against users, therefore, could cause a cold draft during heating operation. In order to prevent a cold draft during heating operation, decide the outlet air temperature with care when designing facilities.

(2) In simultaneous operation of all multiple indoor units, it is recommended to connect less indoor units than is recommended, in order to prevent a cold draft during heating operation.

P5415267 9

3.3 Standard Combination of Outdoor Unit and Indoor Unit

Outdoor Unit	Indoor Unit (Type)	Single Combination	Twin Combination	Triple Combination	Quad Combination
RAS-4HVNC1	In-the-Ceiling (RPI-*FSN2SQ)	RPI-4.0FSN2SQ	-	-	-
	4-Way Cassette (RCI-*FSN3)	RCI-4.0FSN3	RCI-2.0FSN3 x 2	-	RCI-1.0FSN3 x 4
	4-Way Cassette (Compact) (RCIM-*FSN3)	-	RCIM-2.0FSN3 x 2	-	RCIM-1.0FSN3 x 4
	In-the-Ceiling (RPI-*FSN2)	-	RPI-2.0FSN2 x 2	-	RPI-1.0FSN2 x 4
	2-Way Cassette (RCD-*FSN2)	-	RCD-2.0FSN2 x 2	-	RCD-1.0FSN2 x 4
	Ceiling (RPC-*FSN3)	-	RPC-2.0FSN3 x 2	-	-
	Wall (RPK-*FSNSM3)	-	RPK-2.0FSNSM3 x 2	-	RPK-1.0FSNSM3 x 4
RAS-5HVNC1	In-the-Ceiling (RPI-*FSN2SQ)	RPI-5.0FSN2SQ	-	-	-
	4-Way Cassette (RCI-*FSN3)	RCI-5.0FSN3	RCI-2.5FSN3 x 2	RCI-1.5FSN3 x 3	-
	4-Way Cassette (Compact) (RCIM-*FSN3)	-	-	RCIM-1.5FSN3 x 3	-
	In-the-Ceiling (RPI-*FSN2)	-	RPI-2.5FSN2 x 2	RPI-1.5FSN2 x 3	-
	2-Way Cassette (RCD-*FSN2)	-	RCD-2.5FSN2 x 2	RCD-1.5FSN2 x 3	-
	Ceiling (RPC-*FSN3)	-	RPC-2.5FSN3 x 2	RPC-1.5FSN3 x 3	-
	Wall (RPK-*FSNSM3)	-	RPK-2.5FSNSM3 x 2	RPK-1.5FSNSM3 x 3	-
RAS-6HVNC1	In-the-Ceiling (RPI-*FSN2SQ)	RPI-6.0FSN2SQ	-	-	-
	4-Way Cassette (RCI-*FSN3)	RCI-6.0FSN3	RCI-3.0FSN3 x 2	RCI-2.0FSN3 x 3	RCI-1.5FSN3 x 4
	4-Way Cassette (Compact) (RCIM-*FSN3)	-	-	RCIM-2.0FSN3 x 3	RCIM-1.5FSN3 x 4
	In-the-Ceiling (RPI-*FSN2)	-	RPI-3.0FSN2 x 2	RPI-2.0FSN2 x 3	RPI-1.5FSN2 x 4
	2-Way Cassette (RCD-*FSN2)	-	RCD-3.0FSN2 x 2	RCD-2.0FSN2 x 3	RCD-1.5FSN2 x 4
	Ceiling (RPC-*FSN3)	-	RPC-3.0FSN3 x 2	RPC-2.0FSN3 x 3	RPC-1.5FSN3 x 4
	Wall (RPK-*FSNSM3)		RPK-3.0FSNSM3 x 2	RPK-2.0FSNSM3 x 3	RPK-1.5FSNSM3 x 4

^{*}The single connection is subject to MEPS. Other connections are NOT acceptable.

10 P5415267

2-16 TCO-13001

3.4 Enhanced Combination of Outdoor Unit and Indoor Unit

The combination of outdoor units and indoor units are available in the following conditions. For simultaneous operation of all multiple indoor units, it is recommended to connect less indoor units than is recommended, in order to prevent a cold draft during heating operation.

Ou	tdoor Unit Capacity	4HP	5HP	6HP	
Recommended Numb	per of Connectable Indoor Unit	≤ 2 Units			
Maximum Number of	Connectable Indoor Unit		4 Units		
Minimum Indoor Unit	Capacity		0.8HP		
1	Unit Capacity to Outdoor Unit Capacity ng the recommended number of	90-115% (90-100%)			
	In-the-Ceiling Type (RPI-*FSN2SQ)		Only 5.0HP	Only 6.0HP	
	4-Way Cassette Type (RCI-*FSN3)	1.0HP			
	4-Way Cassette (Compact) Type (RCIM-*FSN3)	0.8HP			
Minimum Indoor Unit Capacity	In-the-Ceiling Type (RPI-*FSN2)	0.8HP			
Сараску	2-Way Cassette Type (RCD-*FSN2)	1.0HP			
	Ceiling Type (RPC-*FSN3)		1.5HP		
	Wall Type (RPK-*FSNSM3)	1.0HP			

- (1) (Total Indoor Unit Capacity / Total Outdoor Unit Capacity) should be within the value shown in the "Ratio of Total Indoor Unit Capacity to Outdoor Unit Capacity" in the table above. If the ratio exceeds 100%, adjust it according to the outdoor unit capacity.
- (2) In the following cases, it is recommended to connect less indoor units than is recommended, and it is also recommended that "Ratio of Total Indoor Unit Capacity to Outdoor Unit Capacity" be less than 100%.
 - 4-Way Cassette Type or Ceiling Type indoor unit is connected to the outdoor unit
 - The unit is installed in cold areas (areas where outside temperature drops to -5°C)
 - The unit is installed in cold areas under high heating load conditions.
- (3) For operation of multiple indoor units, the minimum indoor unit capacity against the maximum indoor unit capacity in the same refrigerant cycle should be as follows.

Max. Indoor Unit Capacity	0.8-1.5HP	2.0HP	2.5-4.0HP	5.0 - 6.0HP
Min. Indoor Unit Capacity	≥ 0.8HP	≥ 1.0HP	≥ 1.5HP	≥ 2.0HP

(4) The air flow volume for indoor unit of 0.8 and 1.0HP is higher than that for indoor units of 1.5HP or more. Do not install the unit where users are subject to cold draft during heating operation.

P5415267 11

4. Transportation and Handling

AWARNING

 Select a sufficiently strong installation location. If not, the unit may fall down and it may lead to injuries.

ACAUTION

- Do not step on the product nor put any material on it.
- Do not handle the product alone during transportation.
- Some products are packed with plastic bands. Do not hang the product with them.
- Do not touch the heat exchanger by bare hands. Touching the heat exchanger fins may lead to an injury.
- · Hanging Unit
 - Transport the product as close to the installation location as possible before unpacking.
 - (2) When hanging the unit with crane, refer to the caution label attached to it.
 - (3) Hang the unit with two (2) ropes, without unpacking it, as shown in Fig. 4.1. If hanging the unit after unpacking, protect it with corrugated cardboards or clothes.

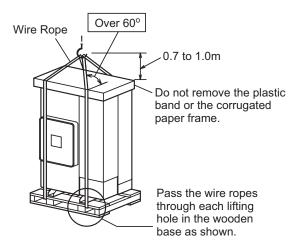
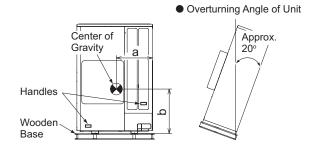



Fig. 4.1 Hanging Work for Transportation

NOTES

- Check safety, make sure that the unit is kept level, and then lift it up slowly.
- Do not hook the cap of the corrugated paper frame or the plastic bands.
- To avoid damage to the resin cover, protect it with clothes before lifting or moving the unit.
- · Lifting Unit Using Handles
 - (1) Do not remove the wooden base from outdoor unit while moving the unit.
 - (2) To prevent the unit from toppling over, check the center of gravity shown in the figure.
 - (3) Check the center of gravity shown in the figure.

Outdoor Unit	Gross Weight	а	b
Capacity	(kg)	(mm)	(mm)
4HP	85	360	510
5-6HP	95	340	490

12 P5415267

2-18 TCO-13001

5. Outdoor Unit Installation

5.1 Factory-Supplied Accessories

Check to ensure that the following accessories are packed with the outdoor unit.

Table 5.1 Factory-Supplied Accessories

Accessory	Q'ty	Remarks
Special Washer	4	For Fixing Anchor Bolt

NOTE

If any of these accessories is not packed with the unit, please contact your contractor.

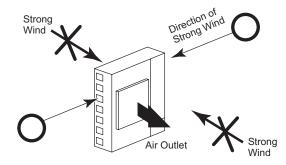
A DANGER

- Do not install the outdoor unit where flammable gases could be present.
 Installation in such place may cause fire.
- For installation in a small room, make sure to take strong measures to prevent the refrigerant from exceeding the maximum permissible concentration in case a refrigerant gas leakage should occur. Otherwise, leaked refrigerant gas will cause suffocation in the event of a leakage. Consult with your distributor for countermeasures (ventilation system, etc).

AWARNING

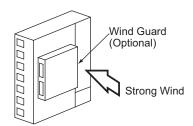
- Select a sufficiently strong installation location. If not, the unit may fall down and it may lead to injuries.
- Do not put any foreign material into the outdoor unit and check to ensure that no foreign material exists in the outdoor unit before installation and test run. Otherwise, fire or failure, etc. may occur.

5.2 Initial Check


- Install the outdoor unit in dry and well ventilated places.
- Do not install the outdoor unit in places subject to direct radiant heat from the sunlight or heat sources. If installing the unit in such places for an unavoidable reason, protect the unit with sunshade, etc.
- Do not install the outdoor unit where the sound from the outdoor unit is obtrusive to others in the vicinity. Note that the sound level of the operation sound is 3 to 6dB higher at the rear side (air-discharging side) than that indicated in the brochure.
- Do not install the outdoor unit where discharged air blows directly against foliage plants or windows.
- Check to ensure that the foundation is level and sufficiently strong. Provide a strong foundation so that:
 - the outdoor unit will not incline.
 - abnormal sound will not occur.
 - the outdoor unit will not fall down due to a strong wind or an earthquake.
- Do not install the outdoor unit where dust or other contaminants could be sucked in the heat exchanger.
- For installation in cold and snowy areas, mount field-supplied hoods at the discharge side of the outdoor unit and the inlet side of the heat exchanger. Also provide a base to the unit in case it snows.
- During heating and defrosting operation, drain water is discharged. Install the unit in a place with good drainage or provide a drainage ditch. To prevent dew from falling on people, do not install the unit high. If installing the unit in such places for an unavoidable reason, provide a 2nd drain pan for better drainage. Otherwise, drain water freezes in winter, causing falls.
- Do not install the outdoor unit in the following places. It may cause a fire, deformation, corrosion or failure.
 - Places where oil (including machinery oil) can be present.
 - Places where a lot of sulfide gas can be present (a hot spring, etc.)
 - Places where strong salty wind blows (coast regions, etc.).
 - Places with an atmosphere of acidity or alkalinity.
- Do not install the outdoor unit where the electromagnetic waves are directly radiated to the electrical box.
- Install the outdoor unit at least 3 meters away from the electromagnetic wave radiator.

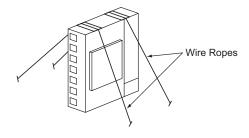
P5415267 13

< Precautions against Strong Wind >

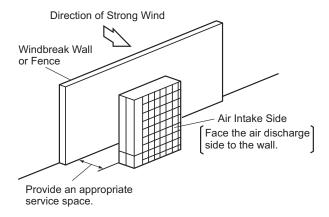

Install the outdoor unit in places less susceptible to a seasonal wind, building wind or storm. If installing the unit in places susceptible to these strong wind for an unavoidable reason, take the following measures to prevent strong wind against the air outlet and inlet.

Changing Installation Direction
 If strong wind blows against the air outlet,
 change the installation direction so that the
 wind blows against the sides of the unit.

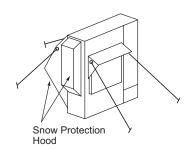
Wind Guard (Optional)


If strong wind blows against the air outlet, use the specified wind guard (optional).

Wind Guard Model


Model	Number of Set Required
WSP-335A	1

 Fix the unit with wire ropes to prevent overturning in case a seasonal strong wind (storm, etc.) blows against the unit.


 Installing Windbreak Wall / Fence
 If installing windbreak wall or fence, make sure to provide sufficient space around the outdoor unit for operation and maintenance.

Refer to the next page for service space.

 In case of Installing Snow Protection Hood (Optional)

The snow protection hood can be utilized to protect the unit from damage or abnormal vibration of propeller fan in low ambient temperature down to -5°C.

Snow Protection Hood Model

Model	Number of Set Required	Туре	Material	Attaching Portion	
ASG-NP335FS4	1		Stainless	Front Side	
ASG-SP10BES2	1		Steel	Rear Side	
ASG-SP10LES2	1	Light	Plate	Left Side	
ASG-NP335F1	1	Half		<u>.</u>	Front Side
ASG-SP10BE	1		Steel Plate	Rear Side	
ASG-SP10LE	1			Left Side	
ASG-SP11FBS2	1		Stainless	Front Side	
ASG-SP10BES2	1		Steel	Rear Side	
ASG-SP10LES2	1		Plate	Left Side	
ASG-SP11FB	1	Full	Full		Front Side
ASG-SP10BE	1		Steel Plate	Rear Side	
ASG-SP10LE	1		1 1010	Left Side	

14 P5415267

2-20 TCO-13001

NOTICE

- If the air inlet and outlet of the outdoor unit are continuously exposed to excessively strong wind when the unit is not operating, the propeller fan will rotate at high speed, causing failure of the fan and fan motor.
- If the air inlet and outlet of the outdoor unit are continuously exposed to excessively strong wind during operation, insufficient air flow volume will cause some operational trouble.

P5415267 15

5.3 Service Space

Install the outdoor unit with sufficient space around it for operation and maintenance as shown below.

(1) Obstacles on Inlet Side

(a) No Obstacle Above

(mm)

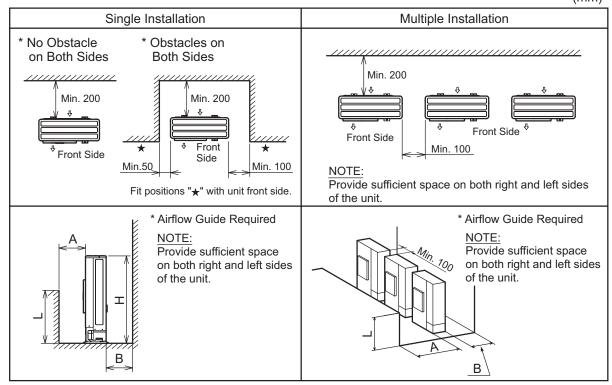


Fig. 5.1 Installation Space (1)

(b) Obstacle Above (mm)

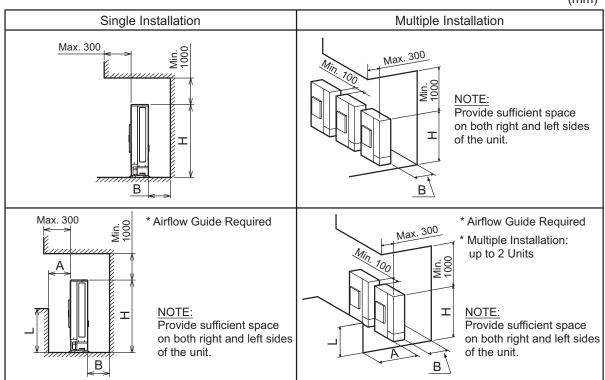


Fig. 5.2 Installation Space (2)

16 P5415267

2-22 TCO-13001

(2) Obstacles on Discharge Side

(a) No Obstacle Above

(mm)

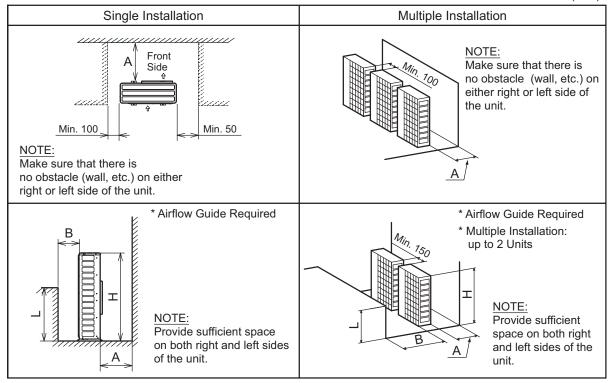


Fig. 5.3 Installation Space (3)

(3) Obstacles on Right and Left Side

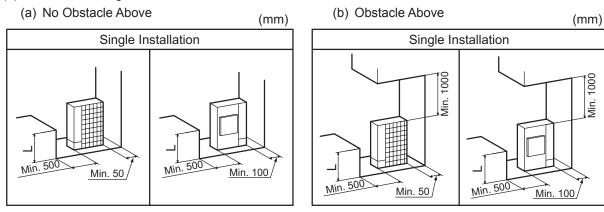


Fig. 5.4 Installation Space (4)

(4) Multi-Row and Multiple Installations

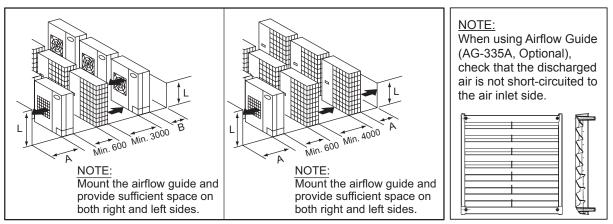


Fig. 5.5 Installation Space (5)

P5415267 17

TCO-13001

2-23

Table 5.2 Dimension of Service Space

,	4	В		
0 < L <u><</u> 1/2H	1/2H < L <u><</u> H	0 < L ≤ 1/2H	1/2H < L <u><</u> H	
Min. 600	Min. 1400	Min. 300	Min. 350	

NOTE

- If L is longer than H, mount the unit on a base so that H is longer than L. In such case ensure that the open space between feet of the base is closed to prevent short circuit of airflow.
- An airflow guide (Optional) is required when there are obstacles on both front and rear side of the outdoor unit.
- Up to 3 outdoor units can be installed for multi-row and multiple outdoor unit installation on a roof top, etc. When more than 3 outdoor units are installed, an airflow guide (Optional) is required in order to prevent short circuit of discharged air.
- Make sure to leave at least 250mm of space to the pipe cover side (on right side as viewed from the front)
 of the unit.
- When using optional parts, refer to "Installation & Maintenance Manual" of each product in order to provide service space correctly.

5.4 Installation Work

(1) Securing Outdoor Unit with Anchor Bolts

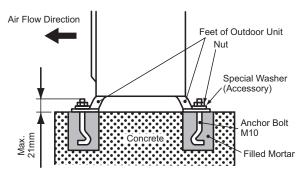


Fig. 5.6 Installation of Anchor Bolts

Secure the outdoor unit to anchor bolts with special washers (factory-supplied accessory).

(2) Mounting Dimension of Anchor Bolts Refer to Fig. 5.7 for the location of fixing holes.

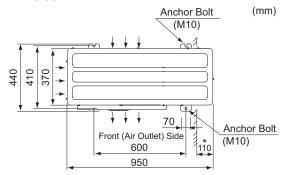


Fig. 5.7 Position of Anchor Bolts

NOTE:

When the dimension marked with * is secured, the piping work from the bottom side can easily be done without interference of the foundation.

(3) Example for Fixing Outdoor Unit by Anchor Bolts

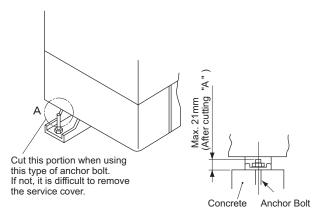


Fig. 5.8 Fixing Example

(4) Further Foundation Work
Fix the outdoor unit firmly to prevent the unit
from declining, making noise, and falling
down due to strong wind or an earthquake.

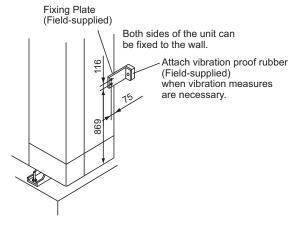
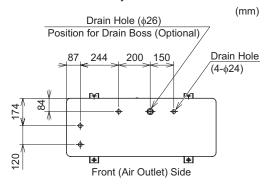
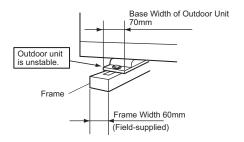



Fig. 5.9 Additional Fixing Arrangement

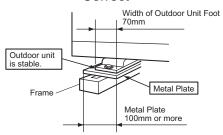
18 P5415267

2-24 TCO-13001

- (5) The drain water is discharged during heating and defrosting operation. Choose a place with good drainage, or provide a drain ditch.
- (6) The drain water might turn into ice in a cold morning. Therefore, when installing the unit on a roof or a balcony, avoid discharging water into places which people often use, because the frozen drain water makes a floor slippery. If installing the unit in such places, provide a second drain pan and the additional drainage.
- (7) Use a drain boss set (Optional) when drain piping work is required to the outdoor unit. Note that the drain boss set cannot be used in cold and snowy areas.



Drain Boss Set


Model	Q'ty
DBS-26	1

(8) The whole of the base of the outdoor unit should be installed on a foundation. When using a vibration-proof mat, it should also be installed in the same way. When installing the outdoor unit on a field-supplied flame, use metal plates to adjust the frame width for stable installation as shown in Fig. 5.10.

Incorrect

Correct

Recommended Metal Plate (Field-supplied)

Material: Hot-Rolled Mild Steel Plate (SPHC) Plate Thickness: 4.5T

(mm)

20

4-C10
2-Long Hole

70

410

70

(550)

Fig. 5.10 Frame and Base Installation

ACAUTION

Aluminum fins have very sharp edges. Pay attention to the fins to avoid any injury.

NOTE

Install the outdoor unit on a roof or in a place where people except service engineers cannot touch the outdoor unit.

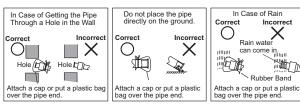
P5415267 19

Refrigerant Piping Work

A DANGER

- Use the specified non-flammable refrigerant (R410A) to the outdoor unit in the refrigerant cycle. Do not charge the unit with materials other than R410A, such as hydrocarbon refrigerants (propane, etc.), oxygen, flammable gases (acetylene, etc.) or poisonous gases when installing, maintaining and moving the unit. These flammables are extremely dangerous and may cause an explosion, a fire, and an injury.
- Prior to installation work, make sure to conduct refrigerant leakage test. The refrigerant (Fluorocarbon) for this unit is non-flammable, non-toxic and odorless. However, if it should leak and contact with fire, toxic gas will be generated. Also because the fluorocarbon is heavier than air, it settles close to the floor, which could cause suffocation.
- For installation in a small room, make sure to take strong measures to prevent the refrigerant from exceeding the maximum permissible concentration in case a refrigerant gas leakage should occur. Otherwise, leaked refrigerant gas will cause suffocation in the event of a leakage. Consult with your distributor for countermeasures (ventilation system, etc).
- When installing the unit, make sure to connect the refrigerant piping before the compressor starts operating. When maintaining, relocating and disposing the unit, remove the refrigerant piping after the compressor stops. If the refrigerant piping are not connected and the compressor are operated with the stop valve opened, the refrigerant cycle will be subjected to extremely high pressure, which may cause an explosion, a fire and an injury.

AWARNING


- When handling the refrigerant, be sure to wear leather gloves to prevent cold injuries.
- Before any brazing work, check to ensure that there is no flammable material around.
 Otherwise, it might lead to a fire.
- Check to ensure that no pressure exists inside the stop valve before removing the flare nut.

ACAUTION

 Tighten the flare nuts according to the specified torque. If an excessive force is applied, the flare nuts may crack due to aging degradation, causing refrigerant leakage.

NOTICE

- Be sure to connect the piping among the units to the same refrigerant cycle.
- Refrigerant Piping End

- (1) Attach a cap or put a plastic bag over the pipe end in case of getting the pipe through a hole in the wall.
- (2) Do not place pipes directly on the ground without a cap or vinyl tape attached at the end of the pipe.

20 P5415267

2-26 TCO-13001

6.1 Piping Materials

Piping Size

- (1) Prepare locally-supplied copper pipes.
- (2) Select the pipe size from the Table 6.1 and Table 6.2.
- (3) Select clean copper pipes. Make sure there is no dust and moisture inside the pipes. Blow nitrogen or dry air into the pipes, to remove any dust or foreign materials before connecting pipes. Do not use any tools which produce a lot of swarf such as a saw or a grinder.

Table 6.1 Piping Size of Outdoor Unit

mm (in.)

Outdoor Unit Capacity	Gas Piping	Liquid Piping			
4 - 6HP	φ15.88 (5/8)	ф9.52 (3/8)			

Table 6.2 Piping Size of Indoor Unit

mm (in.)

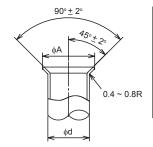
Indoor Unit Capacity	Gas Piping	Liquid Piping
0.8 - 1.5HP	φ12.7 (1/2)	φ6.35 (1/4)
2.0HP	φ15.88 (5/8)	φ6.35 (1/4)
2.5 - 6.0HP	φ15.88 (5/8)	φ9.52 (3/8)

NOTE

If the pipe length is 70m or more, the piping size for the liquid piping shall be $\phi 12.7$.

Piping Thickness and Material
 Due to the change of the design pressure,
 the piping thickness has been changed. The thickness of copper pipe differs depending on its material.

(mm)


Diameter	R410A					
Diameter	Thickness	Material				
ф 6.35	0.8	O Material				
ф 9.52	0.8	O Material				
ф 12.7	0.8	O Material				
ф 15.88	1.0	O Material				

NOTE

Material is based on JIS B8607. Make sure to use an appropriate pipe shown in the table above.

6.2 Flaring and Joint

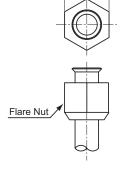
Flaring Dimension

(mm)
A +0 -0.4
-0.4
R410A
9.1
13.2
16.6
19.7

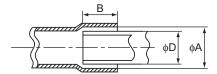
Joint Selection

Do not perform flaring work to the joint made of 1/2H Material. In this case, use a joint with the minimum thickness shown in the table below.

< Minimum Thickness of Joint >


(mm)

	, ,
Diameter	R410A
φ 6.35	0.5
φ 9.52	0.6
φ 12.7	0.7
ф 15.88	0.8
ф 19.05	0.8



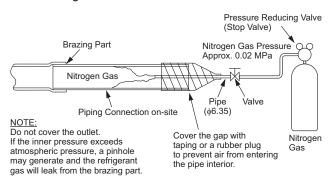
(mm)

()
R410A
17
22
26
29
36

Processing at Brazed Connection
 To prevent gas leakage at the brazed connection, comply with the dimension shown in the table regarding the insertion depth and the gap of the joint pipe.

(mm)

Diameter (D)	Diameter Min. Insertion Depth (B)				
5 ≤ D < 8	6	0.05 - 0.35			
8 ≤ D < 12	7	0.05 - 0.35			
12 ≤ D < 16	8	0.05 - 0.45			
16 ≤ D < 25	10	0.05 - 0.45			


P5415267 21

6.3 Piping Connection Work

Brazing Work

- The brazing work must be performed by an authorized installer in order to prevent any trouble.
- (2) For piping connection, perform securely nonoxidation brazing with nitrogen substitution. If brazing the pipes without the nitrogen substitution, a large amount of oxidized scale will be generated in the pipes. This oxidized scale may cause clogging in the expansion valve, solenoid valve, accumulator and compressor, which can prevent the unit from operating properly.

Do not use field-supplied antioxidant, etc., which may corrode pipes and deteriorate the refrigerant oil.

NOTE

 Make sure to use nitrogen. Nitrogen gas pressure shall be approximately 0.02 MPa. DO NOT use the following gases.

Oxygen	Oxygen is flammable and causes oxidation degradation of the refrigerant oil.
Carbon	Carbon Dioxide may cause
Dioxide	decrease in drier performance.
Freon Gas	Freon Gas emits harmful gases if
	exposed to fire.

- Make sure to use the pressure reducing valve.
- · Do not use field-supplied antioxidant.
 - (3) Use a quality brazing filler metal. Select flux low in chlorine concentration.
 - (4) Remove the flux completely after brazing work.

NOTE

To minimize oxidized scale generation, braze the minimum portion at appropriate temperature.

Flaring Work

- Check that there are no scratches and dents on the surface of the existing refrigerant piping nor smudges inside the pipe.
- (2) Before flaring work, apply refrigerant oil (field-supplied) in thin layer over the flaring surface of the pipe and the flare nut. And then tighten the flare nut for the liquid pipe according to the specified tightening torque using two spanners. Then, tighten the flare nut for the gas pipe in the same way. Check for the gas leakage after flaring work.

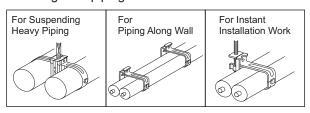
NOTE: Refrigerant oil is field-supplied. [Ethereal Oil FVC68D (Idemitsu Kousan Co. Ltd.)]

Required Tightening Torque

(JIS B8607)

Pipe Size	Tightening Torque
φ6.35 (1/4)	14 to 18 (N-m)
φ9.52 (3/8)	34 to 42 (N-m)
φ12.7 (1/2)	49 to 61 (N-m)
φ15.88 (5/8)	68 to 82 (N-m)
φ19.05 (3/4)	100 to 120 (N-m)

Do not put two spanners here. Refrigerant leakage may occur.

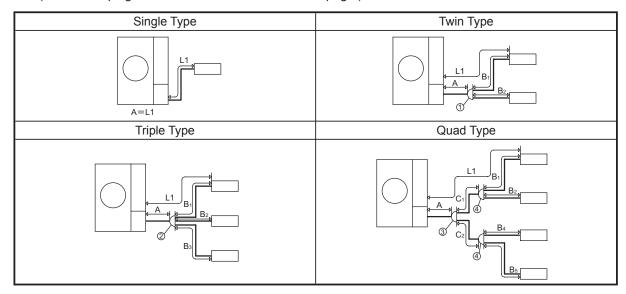


Tightening Work for Stop Valve (Liquid)

(3) Insulate the flare connection for both liquid and gas pipe with thermal insulation and then wrap protective tape around the out side of them in order to avoid dew formation.

NOTE

- When connecting indoor/outdoor units with refrigerant piping, suspend it from certain points and prevent it from touching the weak parts of the building such as the wall, ceiling, etc.
 Otherwise, an abnormal sound may occur due to the vibration of the piping.
- Some examples of fixing methods for the refrigerant piping are shown below.



22 P5415267

2-28 TCO-13001

6.4 Pipe Selection

(1) Select an appropriate pipe according to the combination of the outdoor unit and the indoor unit(s). In the case that more than 5 indoor units are connected to the outdoor unit, select the line branch. (Refer to "Piping Work for Line Branch" in the next page.)

Pipe Size Selection

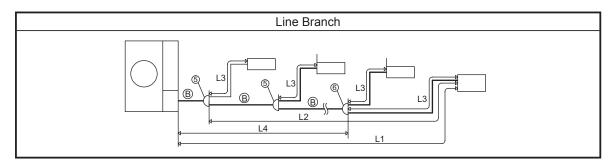
						Pipe	Size					
	/	4			B1-	-B5	C1-C2					
Outdoor Unit		Indoor Unit Capacity							Total Indoor Unit Capacity after 4 Branch Pipe			
	Gas	Liquid	0.8-1	0.8-1.5HP 2.0HP 2.5-6.0HP					<u>≤</u> 2.	0HP	≥ 2.	5HP
			Gas	Liquid	Gas	Liquid	Gas	Liquid	Gas	Liquid	Gas	Liquid
4-6HP	φ15.88	φ9.52	φ12.7	ф6.35	φ15.88	ф6.35	ф15.88	φ9.52	φ12.7	φ6.35	φ15.88	φ9.52

NOTE:

If the pipe length is 70m or more, the pipe size for the liquid piping shall be $\phi 12.7$.

Pipe Length and Branch Pipe Selection

	Pipe Length								ight rence veen nd I.U.		E	Branch P	ipe	
Outdoor				Pipe Le	ength	Pipe Length				Twin	Triple		Quad	
Unit	Init Max. Pipe Length Total A	ctual Le iquid Pi	ngth of ping	after 1st Branch	Main Pipe Length A	O.U. is	O.U. is		2	3	4			
	L1		Twin Triple Qua		Quad	Actual		Higher.			Lower.	1	Total I.U. Capacity after Branch Pipe	
	Actual Length	Equivalent Length	IWIII	Triple	Quau	Length of B or B+C							≤ 2.0HP	≥ 2.5HP
4HP	70	90	70	70	70	10	Main pipe length A shall be much	30	20	TW- 52AN	TG- 53AN	TW- 52AN	TW- 22AN	TW- 52AN
5, 6HP	75	95	75	75	75	10	longer than B-C	30	20	TW- 52AN	TG- 53AN	TW- 52AN	TW- 22AN	TW- 52AN


I.U.: Indoor Unit, O.U.: Outdoor Unit

NOTES:

- 1) The length and the route of the liquid piping shall be the same as those of the gas piping.
- 2) Install the branch pipe near the indoor unit.
- 3) When installing the branch pipe, the pipe length between the branch and each indoor unit shall be equal (B1=B2=B3, B4=B5, C1=C2). If the pipe length is not equal because of building structure, the difference of the pipe length shall be within 8m.
 - (B1-B2), (B2-B3), (B3-B1), (B4-B5) = within 8m
 - $(B1+C1)-(B4+C2),\ (B1+C1)-(B5+C2),\ (B2+C1)-(B4+C2),\ (B2+C1)-(B5+C2)=within\ 8m$
- 4) When installing the piping, make sure that there is no height difference in the pipe length between the indoor units. If there is a height difference because of building structure, the difference of the pipe length should be within 3m.

P5415267 23

Piping Work for Line Branch

Pipe Length and Branch Pipe Selection

Outdoor Unit		4HP	5HP	6HP		
Defricement Dining Langth, L1	Actual Length	70	75			
Refrigerant Piping Length: L1	Equivalent Length	90	9	5		
Pipe Length from 1st Branch to Eac	h Indoor Unit: L2	20	2	0		
Pipe Length from Each Branch to Ea	ach Indoor Unit: L3	10	1	0		
Height Difference		00 / 00	30 / 20			
between Outdoor / Indo (Outdoor Unit is Higher		30 / 20				
Height Differenc between Indoor / Indoo		3	;	3		
Total Pipe Length: Total	of L3+L4	70 75				
Multi-kit Model	(5)	MW-102AN1				
iviuiti-kit Model	6					

Pipe Selection

Main Pipe Diameter (B)

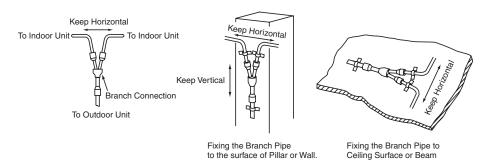
Outdoor Unit Capacity	Gas / Liquid
4-6HP	φ15.88 / φ9.52

Piping between Multi-kit and Indoor Unit (L3)

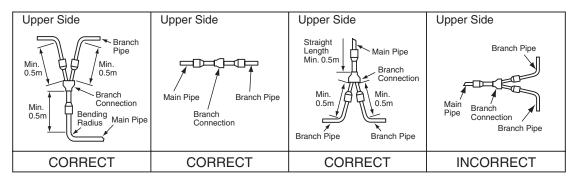
Indoor Unit Capacity	Gas / Liquid
0.8-1.5HP	φ12.7 / φ6.35
2.0HP	φ15.88 / φ6.35
2.5-6.0HP	φ15.88 / φ9.52

 $^{\star}~$ If the pipe length is 70m or more, the pipe size for liquid piping shall be $\phi12.7.$

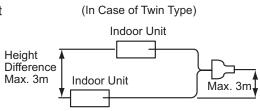
24 P5415267


2-30 TCO-13001

(2) Make sure to use the branch pipe kit for the distributing pipe.

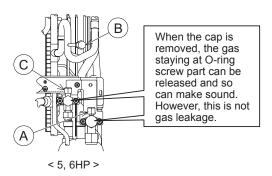

Do not use a T-Joint. Fix the branch pipes horizontally to the pillar, wall or ceiling.

NOTE:


When fixing the piping by fixing plates, wrap the branch pipe with an insulation or slip a cushioning between the pipe and the plate. Then fix it on the wall, etc..

Installation Posture of Branch Pipe

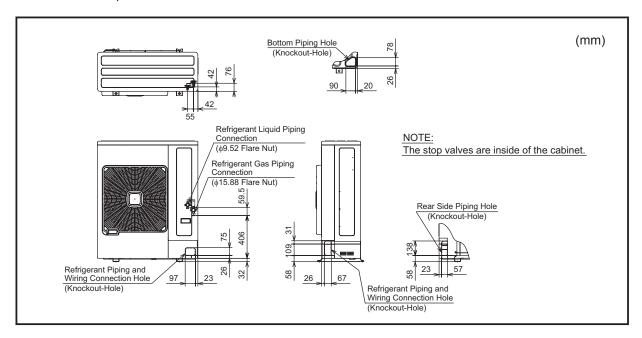
(3) Ensure the positions of branch pipes and height difference between indoor units according to the right figure.


(4) Pressure Measurement with Check Joint

Use the check joints ("A" for the gas stop valve and "B" for the pipe side) to measure the pressure. The pressures switch from high to low depending on the operation mode (cooling operation or heating operation). Connect a manifold gauge according to the table below.

	Cooling	Heating				
Check Joint (A) (for Gas Stop Valve)	Low Pressure	High Pressure				
Check Joint (B) (for Piping)	High Pressure	Low Pressure				
Check Joint © (for Liquid Stop Valve)	Exclusive for Vacuum Pump and Refrigerant Charge					

NOTE:


Be careful that the refrigerant and the refrigerant oil does not splash on the electrical box or the electrical parts when removing the charging hose.

P5415267 25

6.5 Piping Connection

Position of Stop Valve

Pipes can be connected from 4 directions.

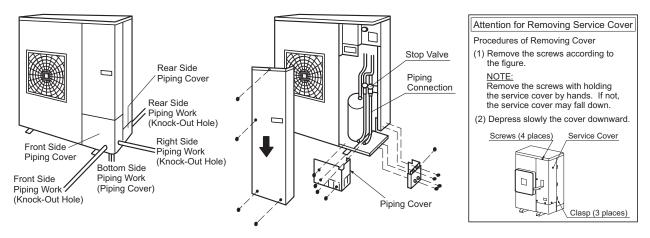
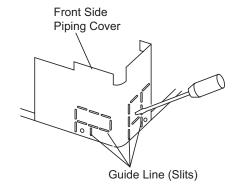
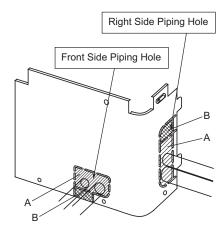



Fig. 6.1 Piping Direction

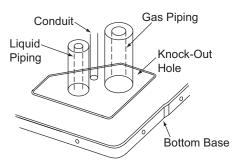
(1) The refrigerant piping can be connected from any of the 4 directions as shown in Fig. 6.1. Make a knock-out hole in the front side pipe cover or bottom base to pass the pipe through the hole. After removing the pipe cover from the unit, punch out the holes following the guide line with a screwdriver and a hammer.


Then, deburr the holes and attach insulation (Field-supplied) for protection of cables and pipes.

26 P5415267

2-32 TCO-13001

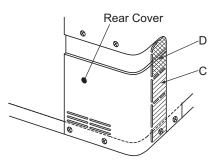
(a) Front and Right Side Piping Work Select the correct knock-out size depending on the size of liquid and gas piping, power wiring, or transition wiring.



The liquid or gas piping, power source cable of less than 14mm², and control cable can be connected from "A" part. When using a lagging cover or conduit, remove "A" and "B" parts. Check the tube size before removing "A" and "B" parts.

NOTE:

Protect cables and pipes from the edges of the cover with insulations, etc. (Field-supplied).


(b) Bottom Side Piping Work After removing the piping cover for the bottom base, perform piping and wiring work.

NOTE:

Prevent the cables from coming into direct contact with the piping.

(c) Rear Side Piping Work
After removing the rear side piping cover,
punch out "C" hole along the guide line.
When using a lagging cover or conduit,
remove "D" part. Check the tube size
before removing "D" part.

NOTE:

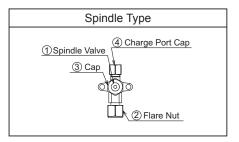
Protect cables and pipes from the edges of the cover with insulations, etc. (Field-supplied).

NOTICE

For the right side and rear side piping work, secure enough space for the piping.

< Example >

Punch out "D" holes (top of the guide line of the piping cover) during the right side cable and the rear side piping work. It is available to install cables and pipes inside the unit without interfering.


- (2) Be sure to attach the piping cover to prevent rain water from entering the unit. Completely seal the penetration parts of the pipes with field-supplied insulation in order to prevent rain water from entering the conduit. To make it easier to attach the piping cover, cut the lower side guide line of the piping cover.
- (3) In cold and snowy areas, fill the gaps of the piping outlet with field-supplied insulations, etc., for snow prevention.
- (4) Use a pipe bender or an elbow (Field-supplied) for bending work while connecting pipes.

P5415267 27

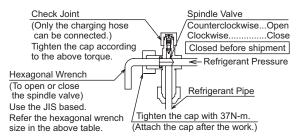
Operation of Stop Valves

NOTICE

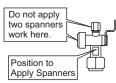
- Remove the stop valve cap before performing the air tight test after connecting the flare nut. Tighten the spindle valve in clockwise direction according to the following table "Tightening Torque of Stop Valves."
- Tighten the flare nut according the specified torque. If the tightening torque is excessive, it may cause refrigerant leakage from the spindle part.
- Perform the air tight test after tightening work. It is more effective to perform this work after fix the flare nuts for the piping connection to the stop valves.
- Use the charging hose for the check joint connection. When removing the charging hose from the check joint, a sound may be heard by a small quantity of refrigerant leak. However it is not abnormality. Do not apply excessive force to the end of opening the spindle. (Tightening Torque: ≤ 5.0N-m)

< Tightening Torque of Stop Valves >

(N-m)


Outdoor Unit	① Spino	dle Valve	② Fla	re Nut	3 (Сар	4 Check Joint for Service Port		
	Gas	Liquid	Gas	Liquid	Gas	Liquid	Gas	Liquid	
4-6HP	9-11	7-9	68-82	34-42	33-42	33-42	14-18	14-18	

< Hexagonal Wrench Size for Spindle Valve >


(mm)

		()
Outdoor Unit	Gas	Liquid
4-6HP	5	4

Perform the work after warming the spindle part by a dryer etc. when controlling the stop valve in an cold area. (O-ring of the spindle part will harden at the low temperature and the refrigerant leakage may occur.)

Use securely two spanners at the following position when removing or installing the pipe. If not, refrigerant leakage will occur.

28 P5415267

2-34 TCO-13001

7. Electrical Wiring

AWARNING

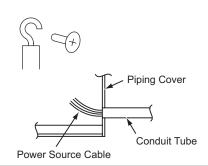
- Electrical wiring work must be performed by authorized installers. Incorrect installation by a non-authorized installer may cause an electric shock or a fire.
- Perform electrical work according to this Installation Manual and all the relevant regulations and standards. Failing to follow these instructions can cause capacity shortage and performance degradation, resulting in an electric shock and a fire.
- Use specified cables between the outdoor unit and the indoor units. Selecting incorrect cables may cause an electric shock or a fire.
- Ensure that the wiring terminals are tightened securely with the specified torques. Loose terminals may cause heat generation at the terminal connection part, a fire or an electric shock.
- Make sure to tie the wires together with cord clamps after connecting the wiring to the terminal block and pass the wires through the wiring hole. If not, the wires will be pinched, causing a fire.
- Make sure to turn OFF the power supply before handling the service connector.
- Fix the cables securely. External forces from the cables applied on the terminals could lead to heat generation and a fire.
- Make sure to turn OFF the main power supply before opening the service cover of the outdoor unit. Otherwise, it may cause an electric shock.
- When controlling the switch on PCB, do not touch other electrical parts. Otherwise, it may cause an electric shock.
- Protect the wires, electrical parts, etc. from rats or other small animals. If not, rats may gnaw at unprotected parts, which may lead to a fire.

7.1 General Check

- (1) Make sure that the field-selected electrical components (main power switches, circuit breakers, wires, conduit connectors and wire terminals) have been properly selected according to the electrical data indicated in Table 7.2 Wiring Capacity and Size. Make sure that the components comply with National Electrical Code (NEC).
 - Supply the electrical power to each outdoor unit. An ELB, fuse and main switch should be provided for each outdoor unit. If not, it will cause fire or an electrical shock.
 - The power source for the indoor unit and outdoor unit should be provided separately.
 Connect a power source wiring to each indoor unit group connected to the same outdoor unit.
 (Max. capacity of one indoor unit group is 6HP.)
- (2) Check to ensure that the power supply voltage is within ±10% of the rated voltage. If the power supply voltage is too low, the system cannot be started due to the voltage drop.
- (3) Check the size of the electrical wires.
- (4) The packaged air conditioner may not be operated normally under the following cases.
 - In case that electrical power for the packaged air conditioner is supplied from the same power transformer as the device with high electricity consumption*
 - In case that the power source wires for the device* and for the packaged air conditioner are located close to each other
 - * (ex): Lift, container crane, rectifier for electric railway, inverter power device, arc furnace, electric furnace, large-sized induction motor and large-sized switch

Regarding the cases mentioned above, surge voltage may be inducted in the power supply wiring for the packaged air conditioner due to a rapid change in power consumption of the device and an activation of switch. Therefore, check the field regulations and standards before performing electrical work in order to protect the power supply for the packaged air conditioner.

- (5) Check to ensure that the earth wires of the outdoor unit and the indoor units are connected.
- (6) Check to ensure that the electrical resistance is more than 1 megohm, by measuring the resistance between ground and the terminal of the electrical parts. If the electrical resistance is less than 1 megohm, do not operate the system until the electrical leakage is found and repaired.


P5415267 29

7.2 Wiring Connection

Perform wiring connecting work for the outdoor unit according to the Fig. 7.1. For the details of the wiring connecting work for each indoor unit, refer to "Installation & Maintenance Manual" of each.

NOTICE

- Do not use a solderless terminal when a single wire is used. Instead, connect the wire directly as shown in the figure. Otherwise, it will cause abnormal heating at the caulking portion of the terminal.
- When using a conduit tube, do NOT lead it into the outdoor unit. If the conduit tube touches the compressor and refrigerant cycle in the outdoor unit, it may damage them.

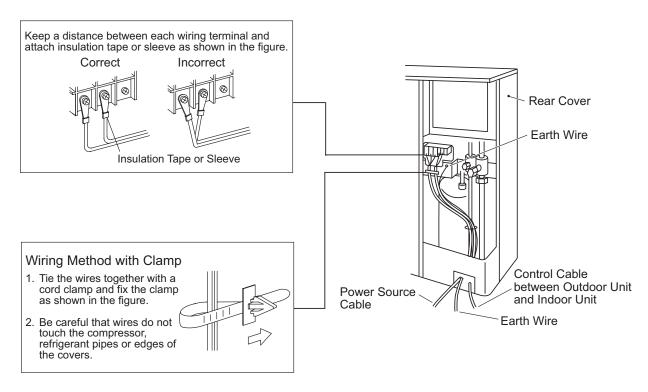
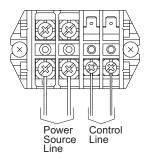
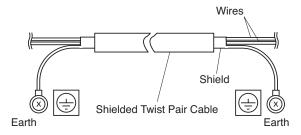



Fig. 7.1 Wiring Connection of Outdoor Unit

30 P5415267


2-36 TCO-13001

(1) Connect the power source cables (L1 and L2 (N) phases) to the terminal block correctly.

- (2) Do not connect the power source cables to the control line. It will cause a burnout of the printed circuit board.
- (3) Connect the control cables between the indoor unit and the outdoor unit, as shown in Fig. 7.2 to 7.4.

 Check to ensure that the terminal for the power source cable (Terminals "L1" to "L1" and "N" to "N" of each terminal block: AC220-240V) between the indoor unit and the outdoor unit coincide correctly. If not, some component will be damaged.
- (4) Use the shielded twist pair cable for control between the outdoor unit and the indoor units. They are connected to the terminals 1 and 2 of the terminal block. The remote control switch cable is connected to the terminals A and B of each indoor unit terminal block.
- (5) When installing the unit in Australia, connect the both ends of the shielded twist pair cable (remote control switch cable and control cable) to the earth as shown below.

NOTES:

- When the total wiring length for control cable between the outdoor unit and the indoor unit and between indoor units is less than 100m, the normal wiring (more than 0.75mm²) except the twist pair cable is available. (Except for Australia)
- 2. The total wiring length for the remote control switch can be extended up to 500m. If the total wiring length is less than 30m, the normal wiring (0.3mm²) except the twist pair cable is available. (Except for Australia)

NOTICE

- Connect correctly the power source line phases.
 3-Phase 4 Wires: L1, N
 3-Phase 3 Wires: L1, L2
- In the case of 3-Phase 4 Wires type
 The power source must be applied from L1 line
 and N line. If applied from L1-L2, the electrical
 parts will be damaged.
- The control cable between the indoor unit and the outdoor unit does not have any polarity.
 Do not apply an excessively high voltage to the cable (Rated Voltage 5V). It may cause failure.
- The remote control switch cable (Field-supplied) does not have any polarity. Do not apply an excessively high voltage to the cable (Rated Voltage 5V). It may cause failure.

A DANGER

 Use an ELB (Earth Leakage Breaker).
 If it is not used, an electric shock or a fire can be caused in the event of a fault.

AWARNING

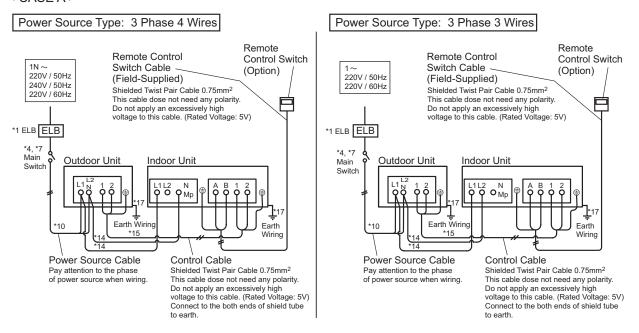
 The tightening torque of each screw shall be as follows. Keep the tightening torque below during wiring work.

> M4: 1.0 to 1.3 N-m M5: 2.0 to 2.5 N-m M6: 4.0 to 5.0 N-m M8: 9.0 to 11.0 N-m M10: 18.0 to 23.0 N-m

- Connect earth wires for the outdoor / indoor unit to prevent an electric shock or an unexpected accident. The earth resistance must be less than 1 megohm. The work must be performed by authorized installers.
- Make sure to turn OFF the main power supply before opening the service cover or of the outdoor unit. Otherwise, it may cause an electric shock.
- Take care not to pinch electrical wirings when attaching the service cover. It might cause an electric shock or a fire.

NOTICE

- Maintain the rated voltage for the power source.
 It may be harmful to the unit if the voltage is either too high or too low.
- Check the the capacity of the power source is enough. If it is not enough, the operation cannot be started due to wide voltage reduction.


2-37

P5415267 31

Use CASE B method wiring for Australia.

The control cable length between the outdoor unit and the indoor unit shall be less than 75m.

< CASE A >

< CASE B >

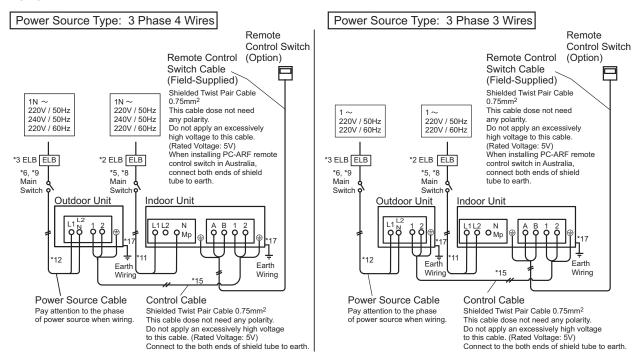
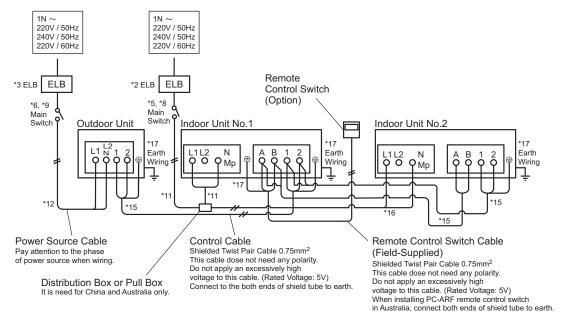



Fig. 7.2 Wiring Connection for Single Type between Indoor Unit and Outdoor Unit

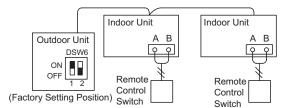
32 P5415267

2-38 TCO-13001

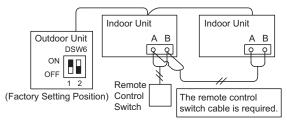
Power Source Type: 3 Phase 4 Wires

NOTE: Other wiring methods are same as the single type.

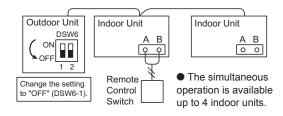
Fig. 7.3 Multiple Combinations for Simultaneous Operation (CASE B)

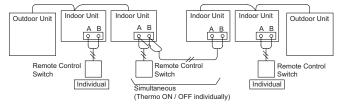


NOTE: Other wiring methods are same as the single type.

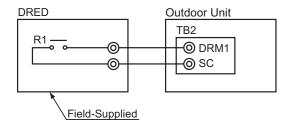

Fig. 7.4 Multiple Combinations for Individual Operation (CASE B)

P5415267 33


- Remote Control Switch Connecting Diagram
 - (a) Individual Operation: Installing Wired Remote Control Switch to Each Indoor Unit


(b) Individual Operation: Installing One Remote Control Switch to Multiple Indoor Units

(c) Simultaneous Operation


(d) Installing Remote Control Switch to Units in Different Refrigerant Cycle Groups

Connection between Demand Response Enabling Device (DRED) and Outdoor Unit
 This function is supported Australian Standard "Demand response capabilities and supporting technologies for electrical products" AS 4755.3.1:2008.

When the input terminals DRM1 and SC are short-circuited, the compressor is forcibly stopped and the indoor unit(s) is put under Thermo-OFF condition. The remote control switch display remains the running mode with the stoppage code No. 10.

Wiring Diagram between DRED and Outdoor Unit

NOTE:

If the demand control (ON/OFF) with only time conditions is set, it is recommended to set the time according to the load, not the constant setting time all through the year. The minimum set interval for demand or forcible stoppage should be 30 minutes or more in consideration of the compressor's start-stop frequency and energy-saving.

ACAUTION

Do not connect the power source cable or control cable to DRM1 and SC terminals. It will cause a burnout of the printed circuit board.

34 P5415267

2-40 TCO-13001

(6) The recommended breaker sizes etc. are shown in Table 7.1.

Table 7.1 Recommended Electrical Parts

Wiring Connection		ELB	Main	Switch	Power Supply Wiring	l	ate Wiring veen d O.U.	Intermediate Wiring between I.U. and I.U.	Earth Wiring
			Normal Current	Fuse Capacity	Capacity	Power Source	Control Cable	Power Source	vviinig
Connecting Power Source to O.U. only		*1	*4	*7	*10	*14	*15	*16	*17
Connecting Power Source	Indoor Unit	*2	*5	*8	*11	-	*15	*16	*17
to O.U. and I.U. separately	Outdoor Unit	*3	*6	*9	*12	-	*15	*16	*17

ELB: Earth Leakage Breaker

I.U.: Indoor Unit
O.U.: Outdoor Unit

NOTES:

- 1. Install a main switch and an ELB for each system separately. Select an ELB that acts within 0.1 second. Select a high-sensitive high speed ELB when the rated sensitive current is less than 30mA.
- 2. Separate the control wiring (*15) between the outdoor unit and the indoor unit more than approximately 5 ~ 6cm from power supply wiring (*11 and *14). Do not use a coaxial cable.
- (7) In the case that a conduit tube for field-wiring is not used, fix rubber bushes with adhesive on the panel.

P5415267 35

Table 7.2 Recommended Wiring Capacity and Size

Single Type

Term		E	LB			rmal Curr			se Capac			W	iring Cap	acity (mm	1 ²)	
(measure)	Nomi	nal Curre	nt (A)	Normal	of Main Switch (A)			of Main Switch (A)			Power Supply			Between O.U. and I.U.		Earth
	CASE A	CASE B Indoor	CASE B Outdoor	Sensitive	CASE A	CASE B Indoor	CASE B Outdoor	CASE A	CASE B Indoor	CASE B Outdoor	CASE A	CASE B Indoor	CASE B Outdoor	SOURCE	Control Cable	Wiring
Model	*1	*2	*3	()	*4	*5	*6	*7	*8	*9	*10	*11	*12	*14	*15	*17
RAS-4HVNC1	50	5	40	30	60	5	50	50	5	40	10	0.75	6	0.75	0.75	3.5
RAS-5HVNC1	50	5	40	30	60	5	50	50	5	40	10	0.75	6	0.75	0.75	3.5
RAS-6HVNC1	50	5	40	30	60	5	50	50	5	40	10	0.75	6	0.75	0.75	3.5

Twin Type

Term		E	LB			mal Curr			se Capac		Wiring Capacity (mm²)						
(measure)	Nomi	nal Curre	nt (A)	Normal	of	of Main Switch (A)			of Main Switch (A)			Power Supply			Between O.U. and I.U. Between I.U. and I.U.		
	CASE A	ı	CASE B Outdoor	Sensitive	CASE A	CASE B Indoor	CASE B Outdoor	CASE A	CASE B Indoor	CASE B Outdoor	CASE A	CASE B Indoor	CASE B Outdoor	SOURCE	Control Cable	Power Source Cable	Earth Wiring
Model	*1	*2	*3	` ,	*4	*5	*6	*7	*8	*9	*10	*11	*12	*14	*15	*16	*17
RAS-4HVNC1	50	5	40	30	60	5	50	50	5	40	10	0.75	6	0.75	0.75	0.75	3.5
RAS-5HVNC1	50	5	40	30	60	5	50	50	5	40	10	0.75	6	0.75	0.75	0.75	3.5
RAS-6HVNC1	50	5	40	30	60	5	50	50	5	40	10	0.75	6	0.75	0.75	0.75	3.5

Triple Type

Term		E	LB		Normal Current			Fu	se Capac	ity	Wiring Capacity (mm²)						
(measure)	Nomi	nal Curre	nt (A)	Normal	of	of Main Switch (A)			of Main Switch (A)			Power Supply			Between O.U. and I.U. Between I.U. and I.U.		
	CASE A	CASE B Indoor	CASE B Outdoor	Sensitive Current (mA)	CASE A	CASE B Indoor	CASE B Outdoor	CASE A	CASE B Indoor	CASE B Outdoor	CASE A	CASE B Indoor	CASE B Outdoor	Power Source Cable	Control Cable	Power Source Cable	Earth Wiring
Model	*1	*2	*3	,	*4	*5	*6	*7	*8	*9	*10	*11	*12	*14	*15	*16	*17
RAS-4HVNC1	50	5	40	30	60	5	50	50	5	40	10	0.75	6	0.75	0.75	0.75	3.5
RAS-5HVNC1	50	5	40	30	60	5	50	50	5	40	10	0.75	6	0.75	0.75	0.75	3.5
RAS-6HVNC1	50	5	40	30	60	5	50	50	5	40	10	0.75	6	0.75	0.75	0.75	3.5

Quad Type

Term		ELB				Normal Current			Fuse Capacity of Main Switch (A)			Wiring Capacity (mm²)					
(measure)	Nominal Current (A)			Normal	of Main Switch (A)			of				Power Supply			Between O.U. and I.U. Between I.U. and I.U.		
	CASE A		CASE B Outdoor	Sensitive Current (mA)	CASE A	CASE B Indoor	CASE B Outdoor	CASE A	CASE B Indoor	CASE B Outdoor	CASE A	CASE B Indoor		Source	Control Cable	Power Source Cable	Earth Wiring
Model	*1	*2	*3	,	*4	*5	*6	*7	*8	*9	*10	*11	*12	*14	*15	*16	*17
RAS-4HVNC1	50	5	40	30	60	5	50	50	5	40	10	0.75	6	0.75	0.75	0.75	3.5
RAS-5HVNC1	50	5	40	30	60	5	50	50	5	40	10	0.75	6	0.75	0.75	0.75	3.5
RAS-6HVNC1	50	5	40	30	60	5	50	50	5	40	10	0.75	6	0.75	0.75	0.75	3.5

ELB: Earth Leakage Breaker
I.U.: Indoor Unit
O.U.: Outdoor Unit

36 P5415267

2-42 TCO-13001

■ Field Minimum Wire Sizes for Power Source

		Maximum	Power Source	e Cable Size	Transmitting	Cable Size
Model	Power Source	Current	IEC 60335-1 *1	MLFC *2	IEC 60335-1 *1	MLFC *2
RPI-4.0FSN2SQ RPI-5.0FSN2SQ RPI-6.0FSN2SQ	240V/1 _φ /50Hz	5A	0.75mm ²			
RCI-1.0FSN3 RCI-1.5FSN3 RCI-2.0FSN3 RCI-2.5FSN3 RCI-3.0FSN3 RCI-4.0FSN3 RCI-5.0FSN3 RCI-6.0FSN3	220-240V/1φ/50Hz 220V/1φ/60Hz	5A	0.75mm²	0.5mm²	0.75mm²	0.5mm²
RAS-4HVNC1 RAS-5HVNC1 RAS-6HVNC1	220-240V/1 _{\$\phi\$} /50Hz 220V/1 _{\$\phi\$} /60Hz	26A	6.0mm ²	3.5mm ²		

^{*} Refer to the NOTES for selection of the power source cable size.

NOTES:

- 1) Follow the local codes and regulations when selecting field wires.
- 2) The wire sizes marked with *1 in the table above are selected at the maximum current of the unit according to the European Standard, IEC 60335-1. Use the wires which are not lighter than the ordinary tough rubber sheathed flexible cord (code designation H05RN-F) or ordinary polychloroprene sheathed flexible cord (code designation H05RN-F).
- 3) The wire sizes marked with *2 in the table are selected at the maximum current of the unit according to the wire, MLFC (Flame Retardant Polyflex Wire) manufactured by Hitachi Cable Ltd., Japan.
- 4) Use a shielded cable for the transmitting circuit and connect it to ground.
- 5) In the case that power cables are connected in series, add maximum current to each unit and select wires below.

Selection Accordi	ng to IEC 60335-1	Selection According to MLFC (at Cable Temperature of 60°C		Temperature of 60°C)
Current i (A)	Wire Size (mm²)	Current i (A)	Wire Size (mm²)	
i ≤ 6	0.75	i ≤ 15	0.5	*3: In the case that
6 < i ≤ 10	1	15 < i ≤ 18	0.75	current exceeds 63A,
10 < i ≤ 16	1.5	18 < i ≤ 24	1.25	do not connect cables
16 < i ≤ 25	2.5	24 < i ≤ 34	2	in series.
$25 < i \le 32$	4	34 < i ≤ 47	3.5	
$32 < i \le 40$	6	47 < i ≤ 62	5.5	
$40 < i \le 63$	10	$62 < i \le 78$	8	
63 < i	*3	78 < i ≤ 112	14	
		112 < i ≤ 147	22	

ACAUTION

Install a multi-pole main switch with a space of 3.5mm or more between each phase.

P5415267 37

8. Setting of Dip Switch

Turn OFF all the power supply of the indoor unit and the outdoor unit before dip switch setting. If not, the setting can be invalid. The "\sum " mark indicates positions of dip switches. Set the dip switches according to the figure below.

DSW1	DSW2	DSW3
Test Operation	Ref. Piping Length / Optional Function Setting	Capacity Setting
ON	ON	ON
1 2 3 4 OFF	1 2 3 4 5 6 OFF	1 2 3 4 5 6 OFF
Factory Setting	Factory Setting	RAS-4HVNC1
ON	ON	0N
1 2 3 4 OFF	1 2 3 4 5 6 OFF	1 2 3 4 5 6 OFF
Cooling	Piping Length ≤ 5m	RAS-5HVNC1
ON	ON	0N
1 2 3 4 OFF	1 2 3 4 5 6 OFF	1 2 3 4 5 6 OFF
Heating	Piping Length ≥ 30m	RAS-6HVNC1
Cooling for Intermediate Season 1 2 3 4 OFF Cooling for Intermediate Season 1 2 3 4 OFF Heating for Intermediate Season ON 1 2 3 4 OFF Forced Stop of Compressor	ON 1 2 3 4 5 6 OFF Optional Function Setting ON ON OFF 1 2 3 4 5 6 OFF External Input / Output Setting Mode	

38 P5415267

2-44 TCO-13001

Setting for Transmitting

For H-LINK or H-LINK II system, set the outdoor unit Nos., refrigerant cycle Nos. and the end terminal resistance.

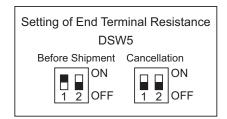

Setting of Refrigerant Cycle No.

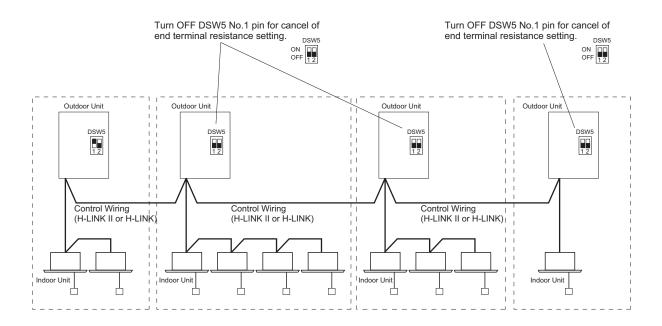
In the same refrigerant cycle, set the same refrigerant cycle No. for the outdoor unit and the indoor units as shown below.

As for setting indoor unit refrigerant cycle No., set the RSW2 and DSW5 on the indoor unit PCB.

	Ref. Cycle No. Setting		
	10 digit	1 digit	
		Setting Position	
	OFF 1 2 3 4 5 6	Set by inserting slotted screwdriver into the groove.	
Outdoor Unit	DSW4	RSW1	
Indoor Unit (H-LINK II)	DSW5	RSW2	

Ex.: In the Case of Setting Refrigerant Cycle No. 25

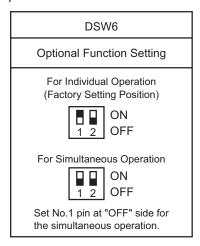

Turn ON No. 2 pin.


Set Dial No.5

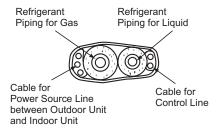
DSW and RSW setting before shipment is OFF. Maximum in setting refrigerant cycle No. is 63.

Setting of End Terminal Resistance

Before shipment, No. 1 pin of DSW5 is set to "ON" side. In the case that more than 1 outdoor units are connected in the same H-LINK or H-LINK II, set No. 1 pin of DSW5 for the 2nd and subsequent outdoor units to "OFF" side. If only one outdoor unit is used, no setting is required.



P5415267 39


< Setting of Multiple Indoor Units Simultaneous Operation >

Before the outdoor unit is shipped, No. 1 pin of DSW6 is set to "ON" side for the individual operation. If the simultaneous operation is required when installing the multiple indoor units, No. 1 pin of DSW6 is set to "OFF" side.

NOTICE

- The electrical wiring connection may differ depending on the indoor unit type, so refer to "Installation & Maintenance Manual" of the indoor unit.
- For twin, triple or quad combination, select the wiring method "Case B" if the total transition wiring length is more than 75m.
 Regarding Australia, the wiring method shall be performed "Case B" even if the total transition wiring length is less than 75m.

Thermal insulator for refrigerant piping shall be using heat resistant type.

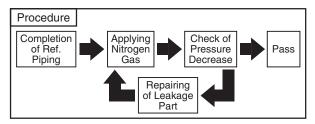
Use 2 core cable (equivalent to following cables: VCTF, VCT, CVV, MVVS, VVR or VVF, size: 0.75mm² to 1.25mm² (manufactured by HITACHI Cable Co. Ltd.)) or 2 core twist pair cable (equivalent to following cables: KPEV or KPEV-S (manufactured by HITACHI Cable Co. Ltd.)) for the control cable between the outdoor unit and the indoor unit.
The total cable length should be less than

The total cable length should be less than 1000m.

- Use 2 core twist pair cable (equivalent to following cables: KPEV or KPEV-S) for the remote control switch cable and the control cable between indoor units. The total cable length should be less than 500m. If the total length of the cable is less than 30m, other cables can be used (the cable size is 0.3mm²).
- Ground securely one side of the shielded twist pair cable (equivalent to following cables: MVVS, KPEV-S) when using it for the control cable between the outdoor unit and the indoor unit, and for the control cable between indoor units. (When installing the unit in Australia, earth the both ends of shielded twist pair cable.)
- Notice for Control Wiring Work between Outdoor Unit and Indoor Unit (for Case A and Case B)
 Keep more than 5 to 6cm distance between the control cable and power source cables. Do not use the coaxial cable. In addition, in the case that the other machinery power source cables and the control cable are installed in parallel, keep more than 1.5m distance between them. If impossible, install the power source cable in the metal conduit and be sure ground one side of it.

40 P5415267

2-46 TCO-13001


9. Additional Refrigerant Charge

9.1 Air Tight Test

- (1) Check to ensure that the stop valves are closed completely before air tight test.
 - < Tightening Check of Stop Valves > After connecting the pipes, remove the caps of stop valves for the gas line and the liquid line. Tighten the open-close spindle in the closing direction according to the following tightening torque.
 - Tightening Torque of Stop Valves

		(,	
Outdoor Unit	Spindle Valve		
Outdoor Unit	Gas	Liquid	
4-6HP	9-11	7-9	

(2) Connect the manifold gauge to the check joints of the liquid line and the gas line stop valves, using charging hoses with a vacuum pump or a nitrogen cylinder. Then perform the air tight test. Do not open the stop valves. Apply a nitrogen gas pressure of 4.15MPa. For checking gas leakage, use a leak detector or forming agent. If there is any leakage, fix the leaking parts.

(3) Check for any gas leakage at the flare nut connections or brazed parts by using a forming agent or a gas leakage detector.

- For checking gas leakage, do not use a forming agent which generates ammonia (NH₃).
- Do not use a household detergent as forming agent, as its components are not clear.

Recommended Forming Agent	Manufacturer	
Guproflex	Yokogawa & CO.,Ltd	

- Nitrogen Gas shall be charged from both check joints (gas line side and liquid line side). If not, the expansion valve of indoor or outdoor unit can be fully open and so air tight test cannot be performed.
 - (4) Insulate the gas piping side and the liquid piping side.
 - (5) Wrap the insulation at each flare nut connection and wind a tape for insulation.

A DANGER

Be sure to use Nitrogen Gas for air tight test. If other gases such as oxygen gas, acetylene gas or fluorocarbon gas are accidentally used, it may cause an explosion or gas intoxication.

- Vacuum Pump and Refrigerant Charge 9.2
 - (1) Vacuum Pumping Work Connect a manifold gauge and vacuum pump to the check joints. Continue vacuum pumping work for at least 1 to 2 hours until the pressure reaches -0.1MPa (-756mmHg) or lower. After vacuum pumping work, stop the vacuum pumping and leave the gauge for 1 hour. Then check that the pressure in the manifold gauge does not increase. Tighten securely the caps for the check joints according to the following tightening torque.

Gas Stop Valve: 9.0 to 14.0 N-m Liquid Stop Valve: 14.0 to 18.0 N-m NOTES:

- 1. Use tools or measuring instruments exclusively for the refrigerant R410A.
- 2. If the pressure does not reach -0.1MPa (-756mmHg), there may be leakage or water collects inside the pipe. Check for any gas leakage and if there is no leakage, operate the vacuum pump for 1 to 2 hours. Then check for any gas leakage once again. If water remains inside the pipe, it may cause a compressor malfunction.
- (2) Charging Work

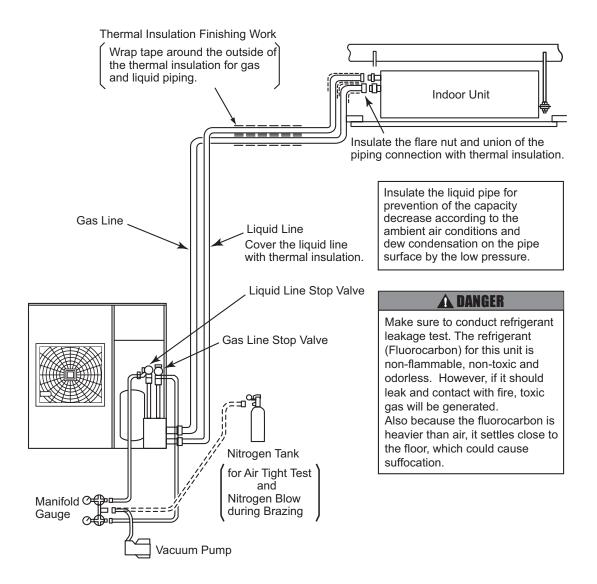
Additional refrigerant charge is not required if the total pipe length is less than 30m. If the total pipe length is more than 30m, onsite additional refrigerant charge is required. Refer to the item 9.3 "Refrigerant Charge Quantity" for details. Additional refrigerant shall be R410A.

(a) Fully open the stop valves for the gas line and the liquid line.

NOTE:

For spindle valve, do not apply an excessive force after fully opening it. (Tightening Torque: < 5.0N-m)

(b) Use a charging hose for the check joint connections of the stop valves.


NOTE:

The gas staying at O-ring or screw parts is released and so may make sound when removing the cap of the spindle. This is not gas leakage.

A DANGER

Use the specified non-flammable refrigerant (R410A) to the outdoor unit in the refrigerant cycle. Do not charge the unit with materials other than R410A.

P5415267 41

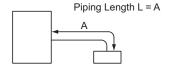
NOTICE

Do NOT use spent refrigerant for air purge. It may cause malfunction due to refrigerant shortage.

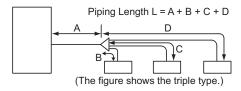
42 P5415267

2-48 TCO-13001

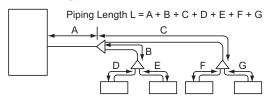
9.3 Refrigerant Charge Quantity

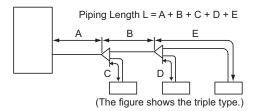

A DANGER

- It is strictly prohibited to release
 Fluorocarbons into the atmosphere without any reason.
- Make sure to collect Fluorocarbons when deposing and maintaining the product.


Although the unit has been charged with the refrigerant, the additional charge is required according to the pipe length. In the case of the actual pipe length is more than 30m, determine the additional refrigerant quantity according to the following procedure, and charge the unit with it. Record the additional refrigerant quantity to facilitate maintenance and servicing activities thereafter.

- (1) Calculating Method of Additional Refrigerant Charge
 - (a) Calculate the pipe length L (m).


< For Single Type >


< For Twin and Triple Type >

< For Quad Type >

< For Line Branch >

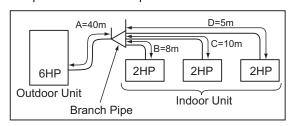
(b) Calculate the additional refrigerant charge quantity according to the table below.

Outdoor Unit Capacity	Ref. Charge Quantity Before Shipment Wo (kg)	Chargeless Length (m): ℓ	Correction Value of Additional Ref. Quantity: P	Max. Additional Ref. Charge Quantity (kg)
4HP	3.2		0.04	1.6
5HP	3.2	30	0.06	2.7
6HP	3.2		0.06	2.7

NOTE:

For Wall Type with the expansion valve kit, some refrigerant charge calculations differ. Refer to "Installation & Maintenance Manual" of the indoor unit for details.

The additional refrigerant charge is NOT required in the case that the piping length is within $30m (L \le 30m)$.


The additional refrigerant charge is required in the case that the piping length is more than 30m (L > 30m).

Calculate the additional refrigerant charge quantity as follows.

W (Additional Ref. Charge Quantity) = $(L - \ell) \times P$

- L: Pipe Length
- Chargeless Length (Refer to the table above.)
- P: Correction Value of Additional Ref. Amount (Refer to the table above.)

< Eample for 6HP and Triple >

Pipe Length L =
$$A + B + C + D$$

= $40 + 8 + 10 + 5 = 63$

Chargeless Length ℓ: 30

Correction Value of Additional Ref. Quantity P: 0.06

Additional Charge Quantity W:

$$W = (L - \ell) \times P$$

= (63 - 30) \times 0.06
= 1.98 (kg)

NOTE:

Ensure that the additional charge quantity should not exceed the maximum additional refrigerant charge quantity.

P5415267 43

(2) Refrigerant Charging Work
Charge the additional refrigerant R410A
according to the piping length.

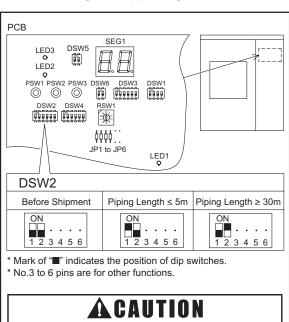
Total Ref Oantity = W

(3) Record of Additional Charge Quantity
Record the additional refrigerant charge
quantity. Total refrigerant quantity of this
system is calculated in the following formula.

	rotal rion during 11
	= + = kg
$\left(\right.$	Additional Charge Qantity: W _ kg
	Total Ref. Qantity : 🔲 kg
	Date of Ref. Charge Work ://

Wo

NOTE:


Regarding the Fluorocarbons used for this product, follow the specification label or caution label for the refrigerant attached to the product.

After the additional refrigerant charge, record the total refrigerant quantity (= quantity before shipment + additional refrigerant quantity in the field) on the refrigerant label. In case of the combination of base units, record the total refrigerant quantity on the main unit label.

When the refrigerant is recovered or charged for repairing, operating or adjusting the unit, record the refrigerant quantity again.

(4) Dip Switch Setting

The dip switch of DSW2 is required according to the pipe length as shown below.

Turn OFF all the power supply of outdoor and indoor unit before the setting. If not,

the setting can be invalid.

NOTICE

- At the test run, fully open the spindle.
 If not fully opened, the devices will be damaged.
- An excess or a shortage of refrigerant is the main cause of trouble to the units.
 Charge the correct refrigerant quantity according to the description of label at the inside of the service cover.

AWARNING

- Check for refrigerant leakage in detail. If a large refrigerant leakage occurs, it will cause difficulty with breathing or harmful gases would occur if fire was being used in the room.
- Maximum Permissible Concentration of HFC GAS R410A
 - (1) The refrigerant R410A is an incombustible and non-toxic gas. However, if leakage occurs and gas fills a room, it may cause suffocation. The maximum permissible concentration of HFC gas, R410A in air is 0.3 kg/m³, according to the refrigeration and air conditioning facility standard (KHK S 0010) by the KHK (High Pressure Gas Protection Association) Japan. Therefore, some effective measure must be taken to lower the R410A concentration in air below 0.3 kg/m³ in case of leakage. As for R410A, this consideration is applied similarly.
 - (2) Calculation of Refrigerant Concentration
 - (A) Calculate the total quantity of refrigerant R (kg) charged in the system connecting all the indoor units of objective rooms.
 - (B) Calculate the room space where this unit is to be installed V (m³) of each objective room.
 - (C) Calculate the refrigerant concentration C (kg/m³) of the room according to the following equation.

R: Total Quantity of Charged
Refrigerant (kg)

V: Room Space Where This
Unit Is to Be Installed (m³)

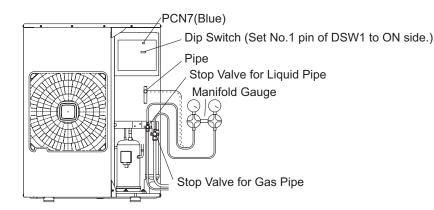
= C: Refrigerant
Concentration
≤ 0.3 (kg/m³)

If local codes or regulations are specified, follow them.

<Example>
British Standard BS4434 1989
Commercial Office
Building Class D Occupancy
C = 0.17 (kg/m³)

44 P5415267

2-50 TCO-13001


9.4 Refrigerant Recovery

Recover the refrigerant according to the following procedure.

- (1) Turn OFF the power supply before recovery work.
- (2) Install a manifold gauge to each stop valve (for gas and liquid pipe).
- (3) Disconnect the connector PCN7 (Blue) from the outdoor unit PCB so that the valve bypassing high pressure side and low pressure side will not open.
- (4) Turn ON the power supply.
- (5) Set the No.1 pin of DSW1 to ON side to start cooling operation. Then close the stop valve for the liquid pipe and recover the refrigerant.
- (6) Immediately after checking that the pressure of the gas stop valve (low pressure) is -0.01MPa (-100mmHg), close the gas stop valve and set the No.1 pin of DSW1 to OFF side to stop the unit.

NOTE:

- 1. Make sure to measure the pressure at the low pressure side with a pressure gauge. Keep the low pressure at -0.01MPa or more.
- 2. Check the temperature on the top of the compressor indicated on 7-segment display (Td). The temperature must be less than 120°C.
- (7) Turn OFF the power supply.
- (8) Connect the connector PCN7 to the outdoor unit PCB.
- (9) Close all the stop valves. If there is residual pressure in the gas and liquid pipes, recover the pressure with a pressure recovery device.

NOTICE

- Turn OFF the power source before recovery work.
- The refrigerant must be collected from 3 check joints (2 for the stop valves of gas and liquid pipe, and 1 for the pipe).

P5415267 45

10. Test Run

10.1 Before Test Run

AWARNING

An electrical shock will occur by residual voltage.

- Disconnect the power source completely before starting the maintenance for electrical parts.
- Check to ensure that no residual voltage exists after disconnecting the power source.

NOTICE

- Check to ensure that each wire for main power supply is connected in correct phase. If it is connected in the reversed phase, the unit will not operate. Connect each electrical wire correctly.
- Do not operate the system until all the check points have been cleared.
 - (1) Check to ensure that the electrical resistance is more than 1 megohm, by measuring the resistance between ground and the terminals of the electrical parts. If the electrical resistance is less than 1 megohm, do not operate the system until the electrical leakage is found and repaired according to the "Insulation Resistance".
 - (2) Check to ensure that the stop valves of the outdoor unit are fully open, and then start the system.
 - (3) When the power source line is disconnected, the unit does not operate. Check to ensure that the power source and the power-supply facility.
 - (4) Check to ensure that the power source has been turned ON for more than 12 hours before the test run, to warm the compressor oil by the crankcase heater. If not, the unit will not operate for maximum 4 hours.
 - (5) Check the following working range.

	Cooling Operation	Heating Operation
I.U. Suction Air Temperature	≥ 15 °C WB	≤ 27 °C DB
O.U. Suction Air Temperature	≥ -5 °C DB	≤ 15 °C WB

*DB: Dry Bulb, WB: Wet Bulb

(6) Connect a manifold gauge in order to measure the pressure from the check joint according to item 6.4 "(4) Pressure Measurement by Check Joint".

- < Insulation Resistance >
 - Check to ensure that the insulation resistance is more than 1 megohm by measuring the resistance between ground and the terminal of the electrical parts with a 500V-megohmmeter.
- (1) If the total unit insulation resistance is lower than 1 megohm, there may be refrigerant collecting in the compressor. This may occur if the unit has not been used for long periods. If the insulation resistance of the unit is lower than 1 megohm or the earth leakage breaker is activated, check the following items.

Checking Detail:

- (a) Disconnect the cables for the compressor and measure the insulation resistance of the compressor itself. If the resistance value is 1 megohm or more, the insulation failure at other electrical parts is suspected.
- (b) If the insulation resistance is lower than 1 megohm, disconnect the compressor cable from the inverter PCB. Then, turn ON the main power to apply current to the crankcase heater. After applying current for more than 3 hours, measure the insulation resistance again. If the insulation resistance is more than 1 megohm, there is no problem to the compressor. Reconnect the cables for compressor. If the insulation resistance is less than 1 megohm, the compressor failure is suspected. (Depending on the air conditions, pipe length or refrigerant conditions, it may be necessary to apply the current for a longer period of time.)

NOTE:

When reconnecting the cables to the compressor, pinch the crimp terminal with long-nose pliers to ensure that it is securely fastened.

(2) Check the recommended size of the ELB shown in Table 7.1 and 7.2. Select high-sensitive high speed ELB when the rated sensitive current is less than 30 mA. (The motion time should be within 0.1 second.)

46 P5415267

2-52 TCO-13001

Table 10.1 Test Run and Maintenance Record

МС	DDEL:	SERIAL. No.			COMPRESSOR MFG. No.	
CL	CUSTOMER'S NAME AND ADDRESS:				DATE:	
1.	. Is the rotation direction of the indoor coil fan correct?					
2.	Is the rotation direction of the outdoo	or coil fan corr	ect?			
3.	Are there any abnormal compressor	sounds?				
4.	Has the unit been operated at least t	wenty (20) m	inutes?			
5.	Check Room Temperature					
	Inlet: No. 1 DB /WB °C, Outlet: DB /WB °C	No. 2 DB	/WB	°C,		
		<u>DB</u>	/WB	°C,	-	
6.	Check Outdoor Ambient Temperature Inlet: DB °C,	e WB		°C		
	Outlet: DB °C,	WB		°C		
7.	Check Refrigerant Temperature					
	Liquid Temperature:			°C		
	Discharge Gas Temperature:			°C	-	
8.	Check Pressure Discharge Pressure:			MPa		
	Suction Pressure:			MPa	-	
9.	Check Voltage				-	
	Rated Voltage:			V	-	
	Operating Voltage:	L_1 -N or L_1 -L	2	V,	-	
40	Starting Voltage:			V	-	
10.	Check Compressor Input Running C Input:	urrent		kW		
	Running Current:			Α	-	
11.	Is the refrigerant charge adequate?					
12.	Do the operation control devices ope	erate correctly	?			
13.	Do the safety devices operate correct	ctly?				
14.	Has the unit been checked for refrige	erant leakage	?			
15.	Is the unit clean inside and outside?					
16.	Are all cabinet panels fixed?					
17.	Are all cabinet panels free from rattle	es?				
18.	Is the filter clean?					
19.	. Is the heat exchanger clean?					
20.	Are the stop valves open?					
21.	Does the drain water flow smoothly f	rom the drain	pipe?			

P5415267 47

10.2 Test Run

AWARNING

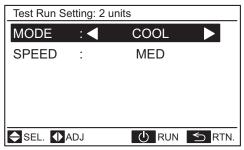
- Do NOT operate the air conditioners to check the electrical wiring, etc until the preparation of the test run is completed.
- Comply with the following items while the system is running.
 - (A) Do not touch any of the parts by hand at the discharge gas side, since the compressor chamber and the pipes at the discharge gas side are higher than 90°C.
 - (B) DO NOT PUSH THE BUTTON OF THE MAGNETIC SWITCH(ES). It will cause a serious accident.

This test run method is for the operation with the wired remote control switch (Model: PC-ARF.) Refer to "Installation & Maintenance Manual" attached to PC-ARF for details on its operation.

- Check to ensure that stop valves (for gas and liquid line) of the outdoor unit are fully opened.
 (For operation of multiple outdoor units, check to ensure that stop valves of all the outdoor units are fully opened.)
- (2) Perform the test run of indoor units one by one sequentially, and then check the accordance of the refrigerant piping system and the electrical wiring system. (If the multiple indoor units are operated simultaneously, the system accordance cannot be inspected.)
- (3) Perform the test run according to the following procedure. Ensure that the unit is operated without any problem.

NOTE:

In the case that 2 remote control switches (main and sub) are installed to the system, perform test run with the main remote control switch.


(a) Press and hold "\(\equiv(menu)\) and "\(\equiv(menu)\) imultaneously for at least 3 seconds. The test run menu will be displayed.

NOTE

When using other remote control switches (PC-AR, PC-LH3A or PC-ARH, etc.), perform the test run according to the "Installation & Maintenance Manual" attached to each.

(b) Select "Test Run" by pressing "△▽" and press "OK". The test run screen will be displayed.

Test Run Screen

 The total number of connected indoor units is indicated on the LCD (Liquid crystal display). In the case of the twin combination (a set of two (2) indoor units), the total number of connected indoor units is indicated as "2 units", and in the case of the triple combination (a set of three (3) indoor units), the total number of connected indoor units is indicated as "3 units".

NOTE:

If "00 unit" is indicated, the auto-address function might have been enabled.
Cancel "Test Run" mode and set it again.

 If the number of connected indoor units displayed on LCD is incorrect, the autoaddress function is not performed correctly due to incorrect wiring, the electric noise, etc.

Turn OFF the power supply, and correct the wiring after checking the following points (do not repeat turning ON and OFF within 10 seconds.)

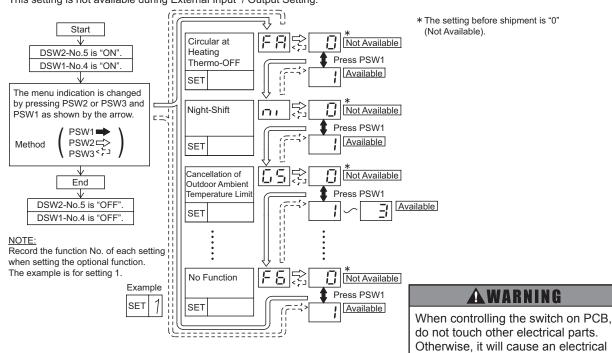
- * Failure To Turn ON Power Supply For Indoor Unit
- * Incorrect Wiring
- Loose Connection between Indoor Units or of Remote Control Switch
- * Incorrect Setting of Indoor Unit Address (The indoor unit address is overlapped.)
- (c) Start Test Run.
 - Press "ტ" (run/stop). The test run operation starts. The operation mode, the air flow volume, the air flow direction and the test run time can be set on the test run screen. Select the item by pressing "△▽" and set the detail by pressing "⊲▽". The default setting of the test run time is 2-hour OFF timer.
 - Check the temperature conditions.
 The unit operation cannot be performed if the conditions are out of range.
 Refer to item 10.1 (5) for the working range.

< Example >

The cooling operation is unavailable if the outdoor temperature drops to -5 °C DB.

48 P5415267

2-54 TCO-13001


- (e) Though the temperature detections by the thermistors are invalid, the protection devices are valid during the test run. If an alarm occurs, refer to Table 10.2 "Alarm Code" and perform troubleshooting. Then perform the test run again.
- (f) According to the label "Checking Method by 7-Segment Display" attached to the back side of the service cover of the outdoor unit, check the temperature, the pressure and the operation frequency of specified portions, and check the connected indoor unit numbers on 7-segment display.
- (g) To finish the test run, wait for the set test run time (default setting: 2 hours) to pass, or press "O" (run / stop) switch again.
 - If the RUN indicator on PC-ARF flashes (2 seconds ON/ 2 seconds OFF), there may be a failure in the transmission between the indoor unit and the remote control switch (loosening of connector, disconnected wire or broken wire, etc.).
 - After turning ON the power source, small sound may be heard from the outdoor unit. This is the operating sound made when the electrical expansion valve adjusts the opening. Therefore, there is no abnormality of the unit.
 - After starting or stopping the compressor, or after starting or finishing the defrosting operation, etc., sound may be heard from the outdoor unit for seconds. This is caused by the pressure difference inside the piping. Therefore, there is no abnormality of the unit.
- (4) For twin, triple and quad combination of indoor units, check the outlet air temperature of each indoor unit. If there is a large difference in the outlet air temperature between the main unit and sub unit(s) (during cooling operation: more than approx. 10deg., during heating operation: more than approx. 20deg.), there may be a failure in the refrigerant piping work. Thus, recheck the refrigerant piping.

P5415267 49

10.3 Optional Function Setting

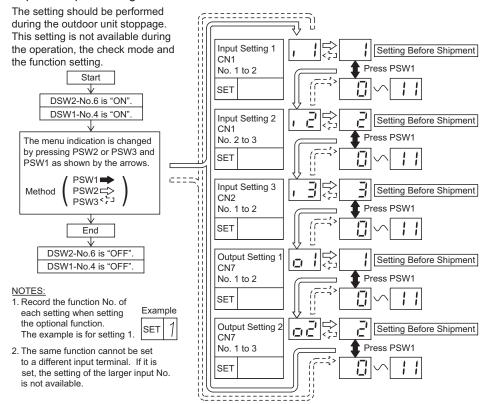
< Function Setting Method >

The function setting should be performed during the outdoor unit stoppage. This setting is not available during External Input / Output Setting.

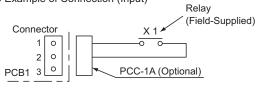
No.	7-Seg Dist	gment olay	Setting Item	
	SEG2	SEG1		
1	FR	1	Circular Function during Heating Thermo-OFF	
2	Ē	1	Night Shift	
		1	Cancellation of Outdoor	For heating
3	55	3	Ambient Temperature Limit	For cooling For cooling / heating
4	סר	1	Change of Defrost Cond	ition
5	<u>Р</u>	1	SLo (Fan Speed) Defrost Setting	
6	ΗĽ	1	No Function	
7		1	No Function	
8	Ηc	1	Compressor Frequency Control Target Value for Cooling	
9	Нh	1	Compressor Frequency Control Target Value for Heating	
10	51	1	No Function	
11	5,	1	Indoor Expansion Valve Opening 1 during Heating Operation Stoppage	
	_''	2	Indoor Expansion Valve Opening 2 during Heating Operation Stoppage	
12	2 50 Indoor Expansion Valve Opening 1 during Heating Thermo-OFF Indoor Expansion Valve Opening 2 during Heating Thermo-OFF			
12			Opening 2 during	

No. 7-Segmer Display			Setting Item	
	SEG2	SEG1	Č	
13	_ 1		Indoor Expansion Valve Initial Opening 1 at Start of Heating Operation	
1131 = .		Indoor Expansion Valve Initial Opening 2 at Start of Heating Operation		
		1	Low Noise Setting 1	
14	db	2	Low Noise Setting 2	
		3	Low Noise Setting 3	
15	4E	1	Demand Function Setting	
16	ШE	1	Wave Function Setting	
17	П	1	Cold Draft Protection 1	
17	Fb	2	Cold Draft Protection 2	
18	E,	1	No Function	
19	45	1	Forced Stoppage after Defrost Operation	
		1	Intermittent Operation of Outdoor Fan Motor 1	
20			Intermittent Operation of Outdoor Fan Motor 2	
20			Intermittent Operation of Outdoor Fan Motor 3	
		4	Intermittent Operation of Outdoor Fan Motor 4	
21	FZ	1	No Function	
22	F3	1	No Function	
23	FY	1	No Function	
24	F5	1	No Function	
25	F5	1	No Function	

shock.


NOTE:

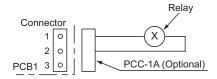
When setting the compressor frequency control target (No.8 or 9), the operation noise may be increased 3 to 5dB.


50 P5415267

2-56 TCO-13001

< External Input / Output Setting Method >

Example of Connection (Input)


Specifications of Relay

Specifications	Remarks
Mini-Power Relay MY1F (or 2F) made by OMRON Co.	220V / 240V

SEG1	Input	Output	
	No Setting	No Setting	
- 1	Fixed Heating Mode	Operation Signal	
2	Fixed Cooling Mode	Alarm Signal	
3	Demand Stoppage *1)	Compressor ON Signal	
4	Intermittent Operation of Outdoor Fan Motor	Defrost Signal	
5	Forced Stoppage *1)	-	
5	Demand Current Control 40%		
7	Demand Current Control 60%	-	
8	Demand Current Stoppage 70%	-	
9	Demand Current Stoppage 80%	-	
10	Demand Current Stoppage 100%	-	
11	No Setting	-	

*1): For "Demand Stoppage" or "Forced Stoppage", set the function setting "F | " to " | ".

Example of Connection (Output)

Specifications of Relay

Specifications			
Mini-Power Relay LY2F DC12V			
made by OMRON Co.			

AWARNING

When controlling the switch on PCB, do not touch other electrical parts. Otherwise, it will cause an electrical shock.

NOTE:

In the case of applying the DRED function, a connector CN2 is not available for input setting.

P5415267 51

Table 10.2 Alarm Code

Code	Category	Content of Abnormality	Leading Cause		
01	Indoor Unit	Activation of Protection Device (Float Switch)	Activation of Float Switch (High Water Level in Drain Pan, Abnormality of		
02	Outdoor Unit	Activation of Protection Device (High Pressure Cut)	Drain Pipe, Float Switch or Drain Pan) Activation of PSH (Pipe Clogging, Excessive Refrigerant, Insert Gas Mixing, Fan Motor Locking at Cooling Operation)		
03		Abnormality between Indoor Unit and Outdoor Unit	Incorrect Wiring, Loose Terminals, Disconnected Wire, Blowout of Fuse, Outdoor Unit Power OFF		
04	Transmission	Abnormality between Inverter PCB and Outdoor PCB	Inverter PCB - Outdoor PCB Transmission Failure (Loose Connector, Wire Breaking, Blowout of Fuse)		
05	Supply Phase	Abnormality of Power Source Phases	Reverse Phase due to Incorrect Wiring		
06	Voltage	Abnormal Inverter Voltage	Outdoor Voltage Drop, Insufficient Power Capacity		
07	Cycle	Decrease in Discharge Gas Superheat	Excessive Refrigerant Charge, Failure of Thermistor, Incorrect Wiring, Incorrect Piping Connection, Expansion Valve Locking at Opened Position (Disconnected Connector)		
08		Excessively High Discharge Gas Temperature at Top of Compressor Chamber	Shortage of Refrigerant, Leaking, Pipe Clogging		
11		Inlet Air Thermistor			
12	Sensor on	Outlet Air Thermistor	Incorrect Wiring, Disconnected Wiring, Wire		
13	Indoor Unit	Freeze Protection Thermistor	Breaking, Short Circuit		
14		Gas Piping Thermistor			
19	Fan Motor	Activation of Protection Device for Indoor Fan Motor	Fan Motor Overheat, Locking (49FE) (130°C OFF)		
20		Compressor Thermistor	In course of Minimary Discourse and all Minimary Mina		
21		High Pressure Sensor	Incorrect Wiring, Disconnected Wiring, Wire Breaking, Short Circuit		
22	Sensor on	Outdoor Air Thermistor			
24	Outdoor Unit	Piping Thermistor	Incorrect Wiring, Disconnected Wiring, Wire Breaking, Short Circuit, Fan Motor Locking at Heating Operation		
31		Incorrect Capacity Setting of Outdoor Unit and Indoor Unit	Incorrect Capacity Code Setting, Excessive or Insufficient Indoor Unit Total Capacity Code		
35	System	Incorrect Setting of Indoor Unit No.	Duplication of Indoor Unit No. in Same Ref. Group, Excess Indoor Units		
38		Abnormality of Picking up Circuit for Protection in Outdoor Unit	Failure of Protection Detecting Device (Incorrect Wiring of Outdoor PCB)		
47	Protection	Activation of Low Pressure Decrease Protection Device (Vacuum Operation Protection)	Insufficient Refrigerant, Refrigerant Piping, Clogging, Expansion Valve Locking at Open Position (Loose Connector), O.U. Fan Motor Locking at Heating Operation		
48	Device	Activation of Overcurrent Protection	Excessive Refrigerant, Heat Exchanger Clogging, Increasing Pressure by Abnormality of Cycle Portions, Abnormality of Compressor (Overload, Locking, Overcurrent)		
51		Abnormality of Current Sensor for Inverter	Overload Operation (Heat Exchanger Clogging)		
53	Inverter	Activation of Transistor Module Protection Device	Abnormality of Inverter (Overload, Overcurrent, Abnormality of Rotation, Activation Failure), Compressor Failure		
54		Abnormality of Inverter Fin Temperature	Abnormal Fin Thermistor Failure, Heat Exchanger Clogging. Fan Motor Failure		
55	<u> </u>	Inverter Failure	Inverter PCB Failure		
57	Outdoor Fan	Abnormality of Fan Motor	Disconnecting Transition Wiring for Fan Motor, Abnormality of Fan Motor or Terminal for Inverter, Incorrect Wiring		
b1	Outdoor Unit No. Setting	Incorrect Setting of Unit and Refrigerant Cycle No.	Over 64 Set for Address or Refrigerant Cycle No.		
EE	Compressor	Compressor Protection Alarm	This alarm code appears when the following alarms* occur three times within 6 hours. *02, 07, 08, 45, 47		

52 P5415267

2-58 TCO-13001

11. Safety and Control Device Setting

Compressor Protection
 High Pressure Switch: This switch cuts out the operation of the compressor when the discharge pressure exceeds the setting.

Fan Motor Protection

When the thermistor temperature reaches the setting, motor output is decreased. The other way, when the temperature becomes lower, limitation is cancelled.

Model			RAS-4HVNC1	RAS-5HVNC1	RAS-6HVNC1
For Compressor		Automatic Reset, Non-adjustable			
Pressure Switch			(each one for each compressor)		
High	Cut-Out	MPa	4.15 ^{-0.05} -0.15	4.15 ^{-0.05} -0.15	4.15 ^{-0.05} -0.15
	Cut-In	MPa	3.20 <u>+</u> 0.15	3.20 <u>+</u> 0.15	3.20 <u>+</u> 0.15
Low	Cut-Out	MPa	0.30 <u>+</u> 0.05	0.30 <u>+</u> 0.05	0.30 <u>+</u> 0.05
	Cut-In	MPa	0.20 <u>+</u> 0.03	0.20 <u>+</u> 0.03	0.20 <u>+</u> 0.03
Fuse					
1φ, 220/	240V, 50Hz				
1φ, 220V, 60Hz		A	40	40	40
CCP Timer			Non-Adjustable		
Setting Time mi		min.	3	3	3
For Condenser Fan Motor			Automatic Reset, Non-Adjustable		
Internal Thermostat			(each one for each motor)		
For Control Circuit					
Fuse Capacity on PCB A		A	5	5	5
CCP Timer Setting Time min. For Condenser Fan Motor Internal Thermostat For Control Circuit		min.	3 Au	Non-Adjustable 3 utomatic Reset, Non-Adjusta (each one for each motor)	3 ble

All the installation work of the air conditioning is completed. Deliver and describe to keep this "Installation & Maintenance Manual" to a user.

P5415267 53

2-60 TCO-13001

HITACHI Installation Manual for Multi-Kits

Models: TW-22AN, TW-52AN, TW-102AN

NOTE

Hand over this installation manual to the next installation work personnel.

1. Applicable Outdoor Units

These multiple pipe connecting kits can be applied to the R410A DC INVERTER UTOPIA series.

2. Transportation

Transport the product as close to the installation location as practical before unpacking.

ACAUTION

Do not put any material on the product.

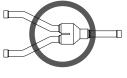
3. Before Installation

Confirm the number of the following parts by referring to the model printed on the package before unpacking.

Do NOT put any foreign material into the parts. Check to confirm that no foreign materials are inside the parts before installation.

		T/A/ 00 A N		TIAL FOANI		TW 400AN	
١ ١	Name of Parts	TW-22AN		TW-52AN		TW-102AN	
Traine or raite			Q'ty		Q'ty		Q'ty
Branch Pipe for Gas Line			1)))) 1		
Branch Pipe for Liquid Line			1		1		1
	Insulation for Gas Line		1 set		1 set		1 set
Accessory	Insulation for Liquid Line		1 set		1 set		1 set
	Таре		2		2		2

NOTE: If any of these parts is not contained, please contact your distributor.


P5414806

1

4. Installation Work

NOTE

Use the Multi-Kit surely to the distributing pipe. Do NOT use the T-Joint.

INCORRECT

CORRECT

4.1 Piping Connection Size

The ends of the multi-kits are finished as shown in the following figures. Cut the end of the pipe to meet with the pipe size.

ACAUTION

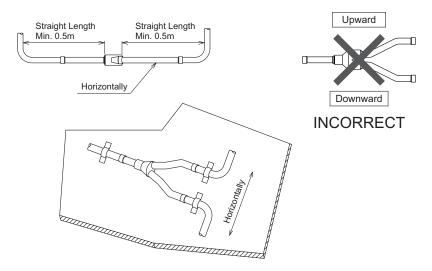
Piping shall be supported with adequate space. Bent pipes and bypass piping (horizontal loop) shall also be installed in order to absorb piping elasticity caused by temperature changes.

Model	Gas Line	Liquid Line		
TW-22AN	ID12.7 otation (To Indoor Unit) otation (To Indoor Unit) otation (To Indoor Unit) ID12.7 (To Outdoor Unit)	ID6.35 ϕ 9.52 (To Indoor Unit) ϕ 9.52 (To Outdoor Unit) ID6.35		
TW-52AN	ID15.88	ID9.52 ID6.35 (To Indoor Unit)		
TW-102AN	(To Indoor Unit) 025.4	1D9.52		

Unit: mm, ID: Inner Diameter

2-62 TCO-13001

4.2 Installation Position

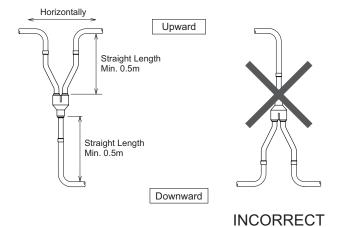

(1) Horizontal Installation

• Fix the branch pipes horizontally to the pillar, wall or ceiling.

NOTE

Wrap the branch pipes with an insulation or a pad and then fix them on the wall with the fixing plates.

• Make the straight length a minimum of 0.5m after the vertical bend.


(2) Vertical Installation

• Fix the branch pipes horizontally to the pillar, wall or ceiling.

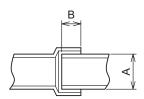
NOTF:

Wrap the branch pipes with an insulation or a pad and then fix them on the wall with the fixing plates.

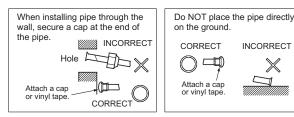
• Make the straight length a minimum of 0.5m after the vertical bend.

4.3 **Piping Connection**

(1) Use clean copper pipes without any moisture or foreign materials on inner surface of pipes. When connecting refrigerant pipe, cut the copper pipes with a pipe cutter as shown below.


Also blow the pipes with nitrogen or air to remain no dust inside the pipe.

Do NOT use a saw, a grindstone or others which causes a large amount of cutting powder.

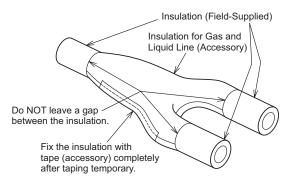


(2) When cutting the pipe, secure the adequate depth for brazing as shown in the following table.

	(11111)
A: Outer Diameter	B: Minimum Depth
Over 5, Below 8	6
Over 8, Below 12	7
Over 12, Below 16	8
Over 16, Below 25	10
Over 25, Below 35	12

Caution for Refrigerant Piping

- (3) Make sure that all stop valves of the outdoor unit are closed completely.
- Blow the inside of the pipes with nitrogen gas when brazing.


DANGER

Check for the refrigerant leakage carefully. If large amount of refrigerant leakage occurs, it will cause to breathe with difficulty or to generate harmful gas due to the fire.

- (5) The air tight test pressure of this product is 4.15MPa.
- (6) Apply the insulation supplied with this multi-kits to each branch (liquid side and gas side) with a tape. Also apply the field-supplied insulation to the field-supplied pipes.

NOTE

When polyethylene foam is applied, a thickness of 10mm for liquid piping and 15mm to 20mm for gas piping is recommended. (Use the insulation with heat resistance of 100°C for gas piping.)

- Perform the insulation work when the pipe surface temperature decreases to the room temperature.
 - If insulation work is performed immediately after brazing, insulation may melt.
- If the ends of pipe are open to the atmosphere for a while after performing piping work, securely put caps or plastic bags over the pipe ends for avoiding moisture or dust.

After installation, it is recommended to keep this manual by a customer.

Mitachi Appliances, Inc.

P5414806-rev.2 URL: http://www.hitachi-ap.com

INCORRECT

2-64 TCO-13001

HITACHI Installation Manual for Multi-Kits Model: TG-53AN, TG-103AN

NOTE

Hand over this installation manual to the next installation work personnel.

1. Applicable Outdoor Units

These multiple pipe connecting kits can be applied to the R410A DC INVERTER UTOPIA series.

2. Transportation

Transport the product as close to the installation location as practical before unpacking.

ACAUTION

Do not put any material on the product.

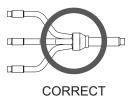
3. Before Installation

Confirm the number of the following parts by referring to the model printed on the package before unpacking.

Do NOT put any foreign material into the parts. Check to confirm that no foreign materials are inside the parts before installation.

Name of Parts		TG-53AN		TG-103AN	
			Q'ty		Q'ty
Bra	nch Pipe for Gas Line		1		1
Branch Pipe for Liquid Line			1		1
	Insulation for Gas Line		1 set		1 set
Accessory	Insulation for Liquid Line		1 set		1 set
	Tape		2		2

NOTE: If any of these parts is not contained, please contact your distributor.

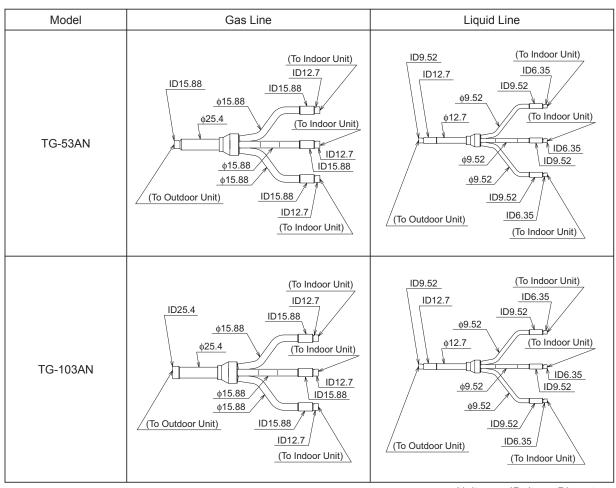

P5414807

1

4. Installation Work

NOTE

Use the Multi-Kit surely to the distributing pipe. Do NOT use the T-Joint.


INCORRECT

4.1 Piping Connection Size

The ends of the multi-kits are finished as shown in the following figures. Cut the end of the pipe to meet with the pipe size.

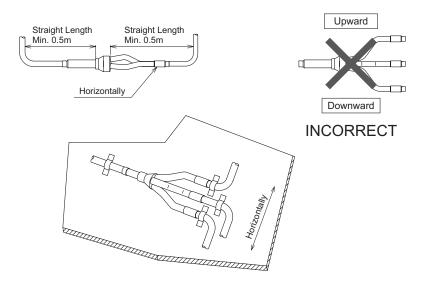
ACAUTION

Piping shall be supported with adequate space. Bent pipes and bypass piping (horizontal loop) shall also be installed in order to absorb piping elasticity caused by temperature changes.

Unit: mm, ID: Inner Diameter

2-66 TCO-13001

4.2 Installation Position

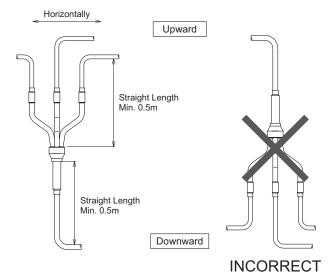

(1) Horizontal Installation

• Fix the branch pipes horizontally to the pillar, wall or ceiling.

NOTE

Wrap the branch pipes with an insulation or a pad and then fix them on the wall with the fixing plates.

• Make the straight length a minimum of 0.5m after the vertical bend.

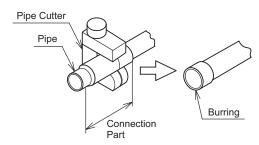

(2) Vertical Installation

• Fix the branch pipes horizontally to the pillar, wall or ceiling.

NOTE:

Wrap the branch pipes with an insulation or a pad and then fix them on the wall with the fixing plates.

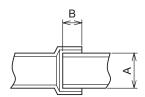
• Make the straight length a minimum of 0.5m after the vertical bend.

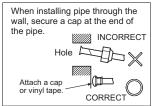


4.3 Piping Connection

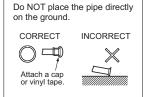
(1) Use clean copper pipes without any moisture or foreign materials on inner surface of pipes. When connecting refrigerant pipe, cut the copper pipes with a pipe cutter as shown below.

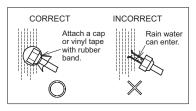
Also blow the pipes with nitrogen or air to remain no dust inside the pipe.


Do NOT use a saw, a grindstone or others which causes a large amount of cutting powder.


(2) When cutting the pipe, secure the adequate depth for brazing as shown in the following table.

	(mr
A: Outer Diameter	B: Minimum Depth
O	0

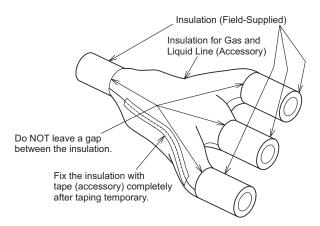

A: Outer Diameter	B: Minimum Depth
Over 5, Below 8	6
Over 8, Below 12	7
Over 12, Below 16	8
Over 16, Below 25	10
Over 25, Below 35	12



· Caution for Refrigerant Piping

 \Box

- (3) Make sure that all stop valves of the outdoor unit are closed completely.
- (4) Blow the inside of the pipes with nitrogen gas when brazing.


A DANGER

Check for the refrigerant leakage carefully. If large amount of refrigerant leakage occurs, it will cause to breathe with difficulty or to generate harmful gas due to the fire.

- (5) The air tight test pressure of this product is 4.15MPa.
- (6) Apply the insulation supplied with this multi-kits to each branch (liquid side and gas side) with a tape. Also apply the field-supplied insulation to the field-supplied pipes.

NOTE

When polyethylene foam is applied, a thickness of 10mm for liquid piping and 15mm to 20mm for gas piping is recommended. (Use the insulation with heat resistance of 100°C for gas piping.)

ACAUTION

- Perform the insulation work when the pipe surface temperature decreases to the room temperature.
 - If insulation work is performed immediately after brazing, insulation may melt.
- If the ends of pipe are open to the atmosphere for a while after performing piping work, securely put caps or plastic bags over the pipe ends for avoiding moisture or dust.

After installation, it is recommended to keep this manual by a customer.

@Hitachi Appliances,Inc.

URL: http://www.hitachi-ap.com P5414807-rev.1

2-68 TCO-13001

HITACHI Installation Manual for Multi-Kits

Line Branch Models: MW-102AN1, MW-162AN1, MW-242AN1, MW-302AN1

NOTE

Hand over this installation manual to the next installation work personnal.

1. Applicable Outdoor Units

These multiple line branches can be applied to the R410A SET-FREE series.

2. Transportation

Transport the product as close to the installation location as practical before unpacking.

ACAUTION

Do not put any material on the product.

3. Before Installation

Confirm the number of the following parts by referring to the model printed on the package before unpacking.

Do NOT put any foreign material into the parts. Check to confirm that no foreign materials are inside the parts before installation.

	Name of Parts	MW-102AN1		MW-162AN1		MW-242AN1		MW-302AN1	
	Name of Faits		Q'ty		Q'ty		Q'ty		Q'ty
Branch Pipe for High/Low Pressure Gas Line			1		1		1		1
Branch Pipe for Liquid Line			1		1		1		
	Insulation for High/Low Pressure Gas Line		1		1		1		1
Accessory	Insulation for Liquid Line		1		1		1		1
	Reducer for High/Low Pressure Gas Line Connection (For End of Multi-Kit Connection)		1		1		1		1
			None	_	None		None		1
			None	_	None	_	None		2
	Reducer for Liquid Line Connection (For Unit Piping Connection)		2		1		1		1
	Таре		2		2		2		2

 $\underline{\textbf{NOTE}}$: If any of these parts is not contained, please contact your distributor.

P5415123

1

4. Installation Work

4.1 Piping Connection Size

The ends of the multi-kits are finished as shown in the following figures. Cut the end of the pipe to meet with the pipe size.

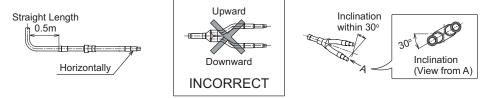
ACAUTION

Piping shall be supported with adequate space. Bent pipes and bypass piping (horizontal loop) shall also be installed in order to absorb piping elasticity caused by temperature changes.

Model	High/Low Pressure Gas Line	Liquid Line	Reducer for High/Low Pressure Gas Line	Reducer for Liquid Line	
MW-102AN1	(To Main Piping) ID12.7 ID15.88 ID19.05 ID15.88 ID19.05 ID15.88 (To Outdoor Unit) (To Indoor Unit)	ID9.52 ID9.52 ID9.52 ID9.52 ID6.35 (To Indoor Unit)	ID22.2 OD19.05	ID9.52 OD6.35 (Q'ty: 2)	
MW-162AN1	(To Main Piping) ID28.58 ID25.4 ID22.2 ID19.05 ID19.05 ID19.05 ID19.05 ID19.05 ID19.05 ID19.05 ID19.05	(To Main Piping) ID9.52 ID12.7 ID6.35 ID9.52 (To Indoor Unit)	ID25.4 OD28.58 ID15.88 ID22.2 ID19.05	ID9.52 OD6.35	
MW-242AN1	(To Main Piping) ID28.58 ID25.4 ID22.2 ID19.05 ID15.88 ID12.7 (To Indoor Unit)	ID15.88 ID9.52 ID12.7 ID9.52 ID12.7 ID9.52 (To Outdoor Unit)	ID25.4 OD28.58 ID15.88 ID22.2 ID12.7	ID9.52 OD6.35	
MW-302AN1	(To Main Piping) ID38.1 ID31.75 ID38.1 ID38.1 (To Outdoor Unit) (To Indoor Unit)	(To Main Piping) ID15.88 ID12.7 ID19.05 ID15.88 ID19.05 ID9.52 ID15.88 ID12.7 ID9.52 (To Outdoor Unit) ID6.35 (To Indoor Unit)	DD31.75 ID25.4 ID22.2 ID25.4 ID25.4 ID25.4 ID25.4 ID25.4 ID25.4 ID25.5 ID15.88 ID15.	ID9.52 OD6.35	

Unit: mm, ID: Inner Diameter, OD: Outer Diameter

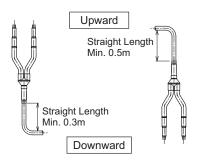
2


2-70 TCO-13001

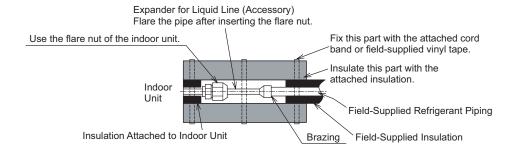
2-71

4.2 Installation Position

(1) Horizontal Installation


Locate the branch pipes on the same horizontal plane. (Inclination within 30°) Make the straight length a minimum of 0.5m after the vertical bend.

(2) Vertical Installation


Straight length of the pipe connection on the outdoor unit side is made as follows:

- a) The collective pipe connection part is installed upward, the straight length must be min. 0.5m.
- b) The collective pipe connection part is installed downward, the straight length must be min.0.3m.

4.3 Connection Procedure for Piping Joint

When connecting liquid piping for the unit with a capacity 2.0HP or smaller, and with the length of piping is 15 meters or longer, apply the piping size of ϕ 9.52mm. Fix the connecting pipe as shown in the below figure. Use the insulation attached to the indoor unit.

TCO-13001

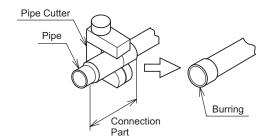
4.4 Piping Connection

(1) When the branched pipe size is smaller than 22.2mm of inner diameter, a mini pipe cutter (field-supplied) as follow is required.

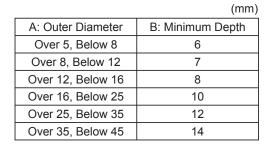
Recommended Mini Pipe Cutter

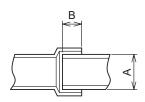
Cleavable Size

Rotating Radius

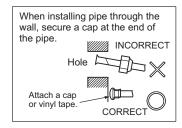

(21)

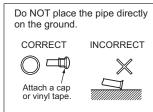
(50)

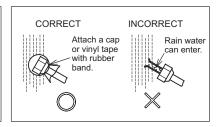

*(70)


* less than 70mm

(2) Use clean copper pipes without any moisture or foreign materials on inner surface of pipes. When connecting refrigerant pipe, cut the copper pipes with a pipe cutter as shown below. Also blow the pipes with nitrogen or air to remain no dust inside the pipe. Do NOT use a saw, a grindstone or others which causes a large amount of cutting powder.



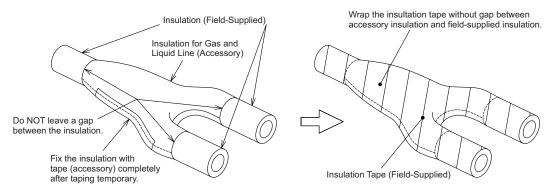

(3) When cutting the pipe, secure the adequate depth for brazing as shown in the following table.



Caution for Refrigerant Piping

4

- (4) Make sure that all stop valves of the outdoor unit are closed completely.
- (5) Blow the inside of the pipes with nitrogen gas when brazing.


A DANGER

Make sure that the refrigerant leakage test should be performed. Refrigerant (Fluorocarbon) for the indoor unit is non-flammable, non-toxic and odorless. However, if the refrigerant is leaked and is contacted with fire, toxic gas will generate. Also, because the fluorocarbon is heavier than air, the floor surface will be filled with it, which could cause suffocation.

- (6) The air tight test pressure of this product is 4.15MPa.
- (7) Apply the insulation supplied with this multi-kits to each branch (liquid side and gas side) with a tape. Also apply the field-supplied insulation to the field-supplied pipes.

NOTE

When polyethylene foam is applied, a thickness of 10mm for liquid piping and 15mm to 20mm for gas piping is recommended. (Use the insulation with heat resistance of 100°C for gas piping.)

ACAUTION

- Perform the insulation work when the pipe surface temperature decreases to the room temperature. If the insulation work is performed immediately after brazing, it may cause to melt the insulation.
- If the pipe ends are open to the atmosphere for a while after piping work, securely put caps or plastic bags over the pipe ends for avoiding moisture or dust.

After installation, it is recommended to keep this manual by a customer.

URL: http://www.hitachi-ap.com P5415123

	Specifications in this catalog are subject to change without notice, in order that HITACHI may bring the latest innovations to their customers.
•	© Hitachi Appliances, Inc.
	URL: http://www.hitachi-ap.com