

OPA 465RKTB

Packaged Reverse Cycle R410A Air Cooled Air Conditioner

Installation & Maintenance

GENERAL

This OPA 465RKTB Outdoor Unit must be installed in accordance with all national and local safety codes.

CONFIGURATIONS

The OPA 465RKTB is supplied in one of two standard configurations :

- 1. Horizontal supply/return air with box mounting channel (RKTBH), or
- 2. Downward supply/return air with box mounting channel (RKTBU).

REFRIGERATION SYSTEM General

The OPA 465 has two independent refrigeration circuits and two compressors to provide the flexibility and economy of two stage operation, i.e. utilising one or two circuits as conditions vary, plus the advantage of staggered starting.

Each refrigeration system has been charged with HFC-410A (R410A) refrigerant; refer wiring diagram specification table for amount. Tapping points are provided to measure discharge and suction operating pressures.

Compressors

The compressors are directional scroll type. The compressor lubricant is polyol ester oil (POE). Note, this oil absorbs moisture quickly if exposed to open air. On commissioning, the compressors must be checked for correct rotation (refer Start Up Procedure). A time delay prevents simultaneous starting of the compressors.

ECONOMISER (Option)

If the outdoor air temperature or heat content preferably, is below that of the return air the fresh air damper opens and the return air damper closes to provide the first stage of cooling. A spill air facility in the building may be necessary for when the return air damper is closed. The fresh air damper should return to minimum setting and the return air damper open before compressors are allowed to operate to provide further cooling. A low limit thermostat is fitted to prevent compressors operating with a mixed air-on coil temperature below 18°C; resets at 20°C. This is by-passed during heating mode.

INSTALLATION

Positioning

Refer to dimension diagrams for minimum clearances. If multiple units are to be placed side-by-side then allow at least 2 m between coil faces.

Mounting

The unit should be fastened to a firm flat horizontal base using the holes supplied in the mounting channels.

When the unit is being installed on a roof it is recommended that the unit is installed on a substantial structure with vibration isolating springs beneath the unit. These springs are not supplied with the unit.

Flexible duct connections are recommended between the supply and return ducts and the unit.

Condensate Drain

The condensate drain should be 'U' trapped outside the unit. The trap should have a vertical height of at least 100 mm. The drain should have a slope of at least 1 in 50 and must not be piped to a level above the unit drain pipe (refer Fig. 3).

Electrical Requirements

Electrical work must be done by a qualified electrician. The outdoor unit must be wired directly from a distribution board by means of a circuit breaker or H.R.C. fuse, and a mains isolator provided - preferably close to the unit.

Note: DO NOT USE REWIRABLE FUSES.

The OPA 465 is provided with a 24V AC control circuit for a thermostat, on/off switch and/or time clock.

The control transformer 240V primary voltage is used for countries with 230-240V power supply. For countries with supply voltages 200-220V, change the primary voltage on the transformer to 208V.

Standard units are suitable for use with thermostats with either manual Heat/Cool selection or automatic changeover subject to the contact ratings of the thermostats.

A 24 hour power supply to the compressor crank case heaters is required, otherwise the warranty is void.

CHECK TESTS

- Leave the on/off switch in the off position and close the mains isolating switch.
 A four hour delay period is required to allow the crankcase heaters to drive any liquid refrigerant out of the compressor oil. Bypass the crankcase heater thermostat (CCHT) for this period only
- Check that the shipping blocks beneath each compressor have been removed and that each compressor is secure on its mounts.
- 3. Check that all fan motors are free running.
- Check that the thermostat is correctly wired to the unit and is set at the desired temperature.

- 5. Check that the air filters have been correctly installed if fitted.
- Check air diffuser dampers are open if appropriate.

START UP PROCEDURE

Use the supplied Commissioning Sheet to help you complete the following procedure:

- After the four hour delay period has expired, switch on the unit. Ensure the crankcase heater thermostat has been reconnected.
- 2. Check the supply voltage between each phase and neutral.
- 3. Compressors fitted are directional. Check for correct rotation. If rotation is incorrect the compressor will not pump, be noisy, and will draw minimal current. To correct motor rotation, change the phasing at the main power terminal. If changing the phasing, check the indoor air fan then runs in the correct direction also.
- Measure the current draw on each phase to the compressor motors and measure the current draw of each fan motor. Check all readings against the specified values in the wiring diagram.
- Fit R410A compatible gauges and measure the suction and discharge pressures of both refrigeration circuits.
- Check that the outdoor air fan motors are running smoothly.
- Test the operation of the reversing valve by running the unit in both the heating and cooling mode.
- Check the indoor unit's fan belt tension after 20 mins of operation and adjust if necessary (refer Commissioning Sheet).
- Check the supply air flow at each outlet.Check the tightness of all electrical
- connections and sign the check label. 11.Touch up any outdoor unit paintwork damage to prevent corrosion.

SETTING SUPPLY AIR FLOW

Consult OPA 465 Technical Data pamphlet for details of airflow/duct static pressure, if required.

If the indoor air returning to the unit is regularly expected to be above 50%RH, then the coil face velocity should be limited to be 2.5 m/s or less (refer Air Handling graph in Technical Data pamphlet).

High humidity levels can occur in tropical or subtropical conditions, and/or when heavily moisture laden fresh air is introduced. Select a fan speed that avoids water carryover problems.

In a free blow or low resistance application, beware of exceeding the fan motor's full load amp limit (refer wiring diagram).

The indoor air fan motor is fitted with a factory set adjustable pitch pulley. Instructions for the adjustment of pulleys is included on the back page of the supplied Commissioning Sheet. One revolution of adjustment is equal to approx. 7% change in air volume flow rate.

OUTDOOR UNIT CONTROLLER (OUC)

The Outdoor Unit Controller (OUC) includes a temperature sensing head pressure control which enables the system to compensate for outdoor ambient temperatures below 20°C on cooling cycle, and above 15°C on heating cycle. The OUC also has features which protect against icing or overheating of coils, rapid cycling of the compressor and loss of refrigerant charge.

If the outdoor air fans take some time to begin rotating when the system is powered on, or they don't appear to be rotating appropriately while the compressor is running, consult the OUC label on the electrical box. If necessary, refer to **temperzone** for further diagnostic information.

MAINTENANCE Monthly

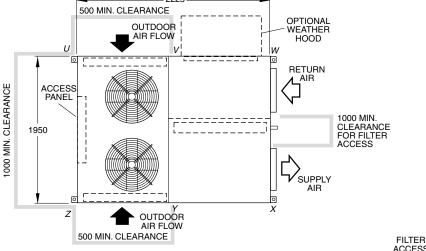
- 1. Check air filters, if fitted, and vacuum or wash clean as necessary.
- Check condensate drain for free drainage.
- 3. Check compressor compartment for oil stains indicating refrigerant leaks.

Three Monthly (or every 1200 hrs of operation) Check the indoor unit's fan belt tension and adjust if necessary.

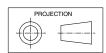
Six Monthly

- 1. Check the tightness of electrical connections.
- 2. Check the tightness of all fans, motor mountings, pulleys and belt tension.
- 3. Check suction and discharge operating pressures.
- 4. Replace indoor air filters (if fitted).
- 5. Check condensate drain for free drainage.

Yearly


- 1. Check all refrigerant piping for chafing and vibration.
- Check the operation of electric heaters, if fitted.
- 3. Check air supply at all diffusers.
- 4. Check for excessive noise and vibration and correct as necessary.
- Check outdoor air fan and motor bearings and lubricate or replace as necessary.
 Note: Indoor air fan bearings are sealed and lubed for life.
- 6. Check for insulation and duct damage and repair as necessary.
- Remove lint and dust accumulation from outdoor coil fins.
- 8. Touch up any paintwork damage to prevent corrosion.

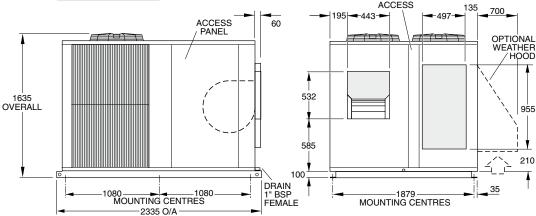
NOTE


The manufacturer reserves the right to make changes in specifications at any time without notice or obligation. Certified data is available on request.

DIMENSIONS (mm)

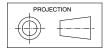
Fig. 1 OPA 465RKTBH – Horizontal Supply & Return Air

OPA 465RKTB

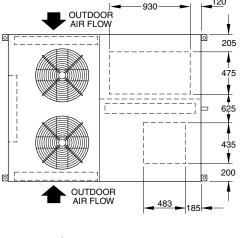


Not to Scale

POINT LOADS (kg)					
U	٧	W	Х	Υ	Z
130	120	110	134	147	159


Net Weight 800 kg

Note: A 2 m clearance is required above the exhaust air fans



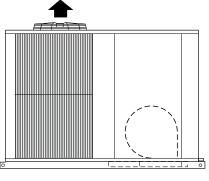

DIMENSIONS (mm) OPA 465RKTB

Fig. 2 OPA 465RKTBU – Downward Supply & Return Air

Not to Scale

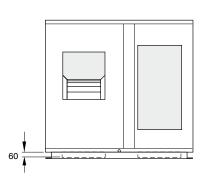
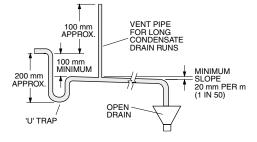
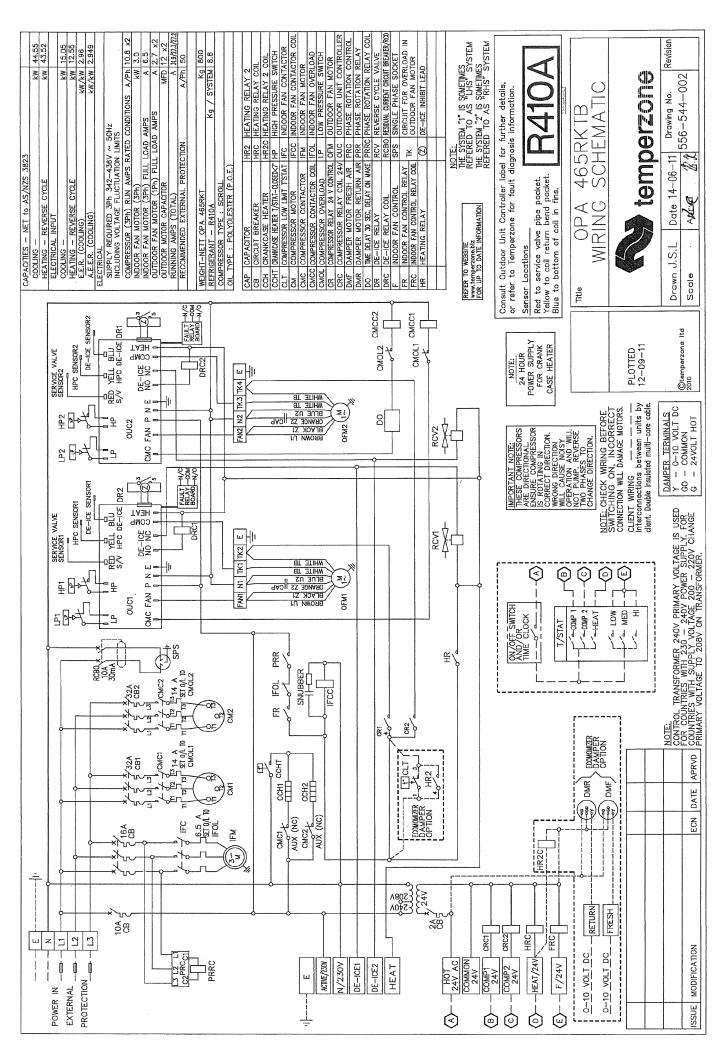




Fig. 5 Condensate Drain

NOTE

The manufacturer reserves the right to make changes in specifications at any time without notice or obligation. Certified data is available on request.

